Matches in SemOpenAlex for { <https://semopenalex.org/work/W2613841070> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2613841070 abstract "Introduction: Acute myocardial infarction (heart attack) is one of the deadliest diseases patients face. The key to cardiovascular disease management is to evaluate large scores of datasets, compare and mine for information that can be used to predict, prevent, manage and treat chronic diseases such as heart attacks. Big Data analytics, known in the corporate world for its valuable use in controlling, contrasting and managing large datasets can be applied with much success to the prediction, prevention, management and treatment of cardiovascular disease. Data mining, visualization and Hadoop are technologies or tools of big data in mining the voluminous datasets for information. Aim: The aim of this literature review was to identify usage of Big Data analytics in heart attack prediction and prevention, the use of technologies applicable to big data, privacy concerns for the patient, and challenges and future trends as well as suggestions for further use of these technologies. Methods: The national and international databases were examined to identify studies conducted about big data analytics in healthcare, heart attack prediction and prevention, technologies used in big data, and privacy concerns. A total of 31 studies that fit these criteria were assessed. Results: Per the studies analyzed, Big Data analytics is useful in predicting heart attack, and the technologies used in Big Data are extremely vital to the management and tailoring of treatment for cardiovascular disease. And as the use of Big Data in healthcare increases, more useful personalized medicine will be available to individual patients. Conclusion: This review offers the latest information on Big Data analytics in healthcare, predicting heart attack, and tailoring medical treatment to the individual. The results will guide providers, healthcare organizations, nurses, and other treatment providers in using Big Data technologies to predict and manage heart attack as well as what privacy concerns face the use of Big Data analytics in healthcare. Effective and tailored medical treatment can be developed using these technologies." @default.
- W2613841070 created "2017-05-19" @default.
- W2613841070 creator A5066223731 @default.
- W2613841070 creator A5066620961 @default.
- W2613841070 date "2017-01-01" @default.
- W2613841070 modified "2023-09-27" @default.
- W2613841070 title "Big Data Analytics in Heart Attack Prediction" @default.
- W2613841070 cites W1505837402 @default.
- W2613841070 cites W1970537697 @default.
- W2613841070 cites W2036356299 @default.
- W2613841070 cites W2047507037 @default.
- W2613841070 cites W2048024857 @default.
- W2613841070 cites W2066474927 @default.
- W2613841070 cites W2461646415 @default.
- W2613841070 cites W2470085004 @default.
- W2613841070 cites W2472460513 @default.
- W2613841070 cites W2496798823 @default.
- W2613841070 cites W2588984225 @default.
- W2613841070 cites W2595660635 @default.
- W2613841070 cites W593727409 @default.
- W2613841070 cites W2185872832 @default.
- W2613841070 cites W2306931392 @default.
- W2613841070 doi "https://doi.org/10.4172/2167-1168.1000393" @default.
- W2613841070 hasPublicationYear "2017" @default.
- W2613841070 type Work @default.
- W2613841070 sameAs 2613841070 @default.
- W2613841070 citedByCount "37" @default.
- W2613841070 countsByYear W26138410702017 @default.
- W2613841070 countsByYear W26138410702018 @default.
- W2613841070 countsByYear W26138410702019 @default.
- W2613841070 countsByYear W26138410702020 @default.
- W2613841070 countsByYear W26138410702021 @default.
- W2613841070 countsByYear W26138410702022 @default.
- W2613841070 countsByYear W26138410702023 @default.
- W2613841070 crossrefType "journal-article" @default.
- W2613841070 hasAuthorship W2613841070A5066223731 @default.
- W2613841070 hasAuthorship W2613841070A5066620961 @default.
- W2613841070 hasBestOaLocation W26138410701 @default.
- W2613841070 hasConcept C124101348 @default.
- W2613841070 hasConcept C175801342 @default.
- W2613841070 hasConcept C2522767166 @default.
- W2613841070 hasConcept C41008148 @default.
- W2613841070 hasConcept C75684735 @default.
- W2613841070 hasConcept C79158427 @default.
- W2613841070 hasConceptScore W2613841070C124101348 @default.
- W2613841070 hasConceptScore W2613841070C175801342 @default.
- W2613841070 hasConceptScore W2613841070C2522767166 @default.
- W2613841070 hasConceptScore W2613841070C41008148 @default.
- W2613841070 hasConceptScore W2613841070C75684735 @default.
- W2613841070 hasConceptScore W2613841070C79158427 @default.
- W2613841070 hasIssue "02" @default.
- W2613841070 hasLocation W26138410701 @default.
- W2613841070 hasOpenAccess W2613841070 @default.
- W2613841070 hasPrimaryLocation W26138410701 @default.
- W2613841070 hasRelatedWork W2337265393 @default.
- W2613841070 hasRelatedWork W2472976221 @default.
- W2613841070 hasRelatedWork W2508885301 @default.
- W2613841070 hasRelatedWork W2509056639 @default.
- W2613841070 hasRelatedWork W2625749796 @default.
- W2613841070 hasRelatedWork W2739436898 @default.
- W2613841070 hasRelatedWork W2777139086 @default.
- W2613841070 hasRelatedWork W2929289283 @default.
- W2613841070 hasRelatedWork W4386323208 @default.
- W2613841070 hasRelatedWork W2551093110 @default.
- W2613841070 hasVolume "06" @default.
- W2613841070 isParatext "false" @default.
- W2613841070 isRetracted "false" @default.
- W2613841070 magId "2613841070" @default.
- W2613841070 workType "article" @default.