Matches in SemOpenAlex for { <https://semopenalex.org/work/W2614352064> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2614352064 abstract "Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies." @default.
- W2614352064 created "2017-05-26" @default.
- W2614352064 creator A5008718870 @default.
- W2614352064 creator A5015640756 @default.
- W2614352064 creator A5039837606 @default.
- W2614352064 creator A5055420452 @default.
- W2614352064 creator A5060820237 @default.
- W2614352064 creator A5073941796 @default.
- W2614352064 creator A5075987263 @default.
- W2614352064 creator A5081710565 @default.
- W2614352064 date "2017-05-16" @default.
- W2614352064 modified "2023-09-22" @default.
- W2614352064 title "Ensemble Predictions of Air Pollutants in China in 2013 for Health Effects Studies Using WRF/CMAQ Modeling System with Four Emission Inventories" @default.
- W2614352064 doi "https://doi.org/10.5194/acp-2017-182" @default.
- W2614352064 hasPublicationYear "2017" @default.
- W2614352064 type Work @default.
- W2614352064 sameAs 2614352064 @default.
- W2614352064 citedByCount "1" @default.
- W2614352064 countsByYear W26143520642017 @default.
- W2614352064 crossrefType "posted-content" @default.
- W2614352064 hasAuthorship W2614352064A5008718870 @default.
- W2614352064 hasAuthorship W2614352064A5015640756 @default.
- W2614352064 hasAuthorship W2614352064A5039837606 @default.
- W2614352064 hasAuthorship W2614352064A5055420452 @default.
- W2614352064 hasAuthorship W2614352064A5060820237 @default.
- W2614352064 hasAuthorship W2614352064A5073941796 @default.
- W2614352064 hasAuthorship W2614352064A5075987263 @default.
- W2614352064 hasAuthorship W2614352064A5081710565 @default.
- W2614352064 hasBestOaLocation W26143520642 @default.
- W2614352064 hasConcept C119898033 @default.
- W2614352064 hasConcept C121332964 @default.
- W2614352064 hasConcept C126314574 @default.
- W2614352064 hasConcept C127313418 @default.
- W2614352064 hasConcept C133204551 @default.
- W2614352064 hasConcept C153294291 @default.
- W2614352064 hasConcept C166957645 @default.
- W2614352064 hasConcept C178790620 @default.
- W2614352064 hasConcept C185592680 @default.
- W2614352064 hasConcept C191935318 @default.
- W2614352064 hasConcept C205649164 @default.
- W2614352064 hasConcept C2776720842 @default.
- W2614352064 hasConcept C2776845762 @default.
- W2614352064 hasConcept C39432304 @default.
- W2614352064 hasConcept C49204034 @default.
- W2614352064 hasConcept C559116025 @default.
- W2614352064 hasConcept C82685317 @default.
- W2614352064 hasConcept C91586092 @default.
- W2614352064 hasConceptScore W2614352064C119898033 @default.
- W2614352064 hasConceptScore W2614352064C121332964 @default.
- W2614352064 hasConceptScore W2614352064C126314574 @default.
- W2614352064 hasConceptScore W2614352064C127313418 @default.
- W2614352064 hasConceptScore W2614352064C133204551 @default.
- W2614352064 hasConceptScore W2614352064C153294291 @default.
- W2614352064 hasConceptScore W2614352064C166957645 @default.
- W2614352064 hasConceptScore W2614352064C178790620 @default.
- W2614352064 hasConceptScore W2614352064C185592680 @default.
- W2614352064 hasConceptScore W2614352064C191935318 @default.
- W2614352064 hasConceptScore W2614352064C205649164 @default.
- W2614352064 hasConceptScore W2614352064C2776720842 @default.
- W2614352064 hasConceptScore W2614352064C2776845762 @default.
- W2614352064 hasConceptScore W2614352064C39432304 @default.
- W2614352064 hasConceptScore W2614352064C49204034 @default.
- W2614352064 hasConceptScore W2614352064C559116025 @default.
- W2614352064 hasConceptScore W2614352064C82685317 @default.
- W2614352064 hasConceptScore W2614352064C91586092 @default.
- W2614352064 hasFunder F4320321001 @default.
- W2614352064 hasFunder F4320322769 @default.
- W2614352064 hasLocation W26143520641 @default.
- W2614352064 hasLocation W26143520642 @default.
- W2614352064 hasOpenAccess W2614352064 @default.
- W2614352064 hasPrimaryLocation W26143520641 @default.
- W2614352064 hasRelatedWork W1847304143 @default.
- W2614352064 hasRelatedWork W1902708630 @default.
- W2614352064 hasRelatedWork W1973536692 @default.
- W2614352064 hasRelatedWork W2007173101 @default.
- W2614352064 hasRelatedWork W2009331722 @default.
- W2614352064 hasRelatedWork W2017388934 @default.
- W2614352064 hasRelatedWork W2030132082 @default.
- W2614352064 hasRelatedWork W2135629374 @default.
- W2614352064 hasRelatedWork W2152811544 @default.
- W2614352064 hasRelatedWork W2340400090 @default.
- W2614352064 hasRelatedWork W2579196193 @default.
- W2614352064 hasRelatedWork W2604913335 @default.
- W2614352064 hasRelatedWork W2768049522 @default.
- W2614352064 hasRelatedWork W2898405163 @default.
- W2614352064 hasRelatedWork W2899968658 @default.
- W2614352064 hasRelatedWork W2907860536 @default.
- W2614352064 hasRelatedWork W2980047525 @default.
- W2614352064 hasRelatedWork W3025652476 @default.
- W2614352064 hasRelatedWork W3161127289 @default.
- W2614352064 hasRelatedWork W892009978 @default.
- W2614352064 isParatext "false" @default.
- W2614352064 isRetracted "false" @default.
- W2614352064 magId "2614352064" @default.
- W2614352064 workType "article" @default.