Matches in SemOpenAlex for { <https://semopenalex.org/work/W2614403722> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2614403722 endingPage "65" @default.
- W2614403722 startingPage "35" @default.
- W2614403722 abstract "Emil Artin defined a zeta function for algebraic curves over finite fields and made a conjecture about them analogous to the famous Riemann hypothesis. This and other conjectures about these zeta functions would come to be called the Weil conjectures, which were proved by Weil in the case of curves and eventually, by Deligne in the case of varieties over finite fields. Much work was done in the search for a proof of these conjectures, including the development in algebraic geometry of a Weil cohomology theory for these varieties, which uses the Frobenius operator on a finite field. The zeta function is then expressed as a determinant, allowing the properties of the function to relate to the properties of the operator. The search for a suitable cohomology theory and associated operator to prove the Riemann hypothesis has continued to this day. In this paper we study the properties of the derivative operator $$D = frac{d} {dz}$$ on a particular family of weighted Bergman spaces of entire functions on $$mathbb{C}$$ . The operator D can be naturally viewed as the “infinitesimal shift of the complex plane” since it generates the group of translations of $$mathbb{C}$$ . Furthermore, this operator is meant to be the replacement for the Frobenius operator in the general case and is used to construct an operator associated with any given meromorphic function. With this construction, we show that for a wide class of meromorphic functions, the function can be recovered by using a regularized determinant involving the operator constructed from the meromorphic function. This is illustrated in some important special cases: rational functions, zeta functions of algebraic curves (or, more generally, varieties) over finite fields, the Riemann zeta function, and culminating in a quantized version of the Hadamard factorization theorem that applies to any entire function of finite order. This shows that all of the information about the given meromorphic function is encoded into the special operator we constructed. Our construction is motivated in part by work of Herichi and the second author on the infinitesimal shift of the real line (instead of the complex plane) and the associated spectral operator, as well as by earlier work and conjectures of Deninger on the role of cohomology in analytic number theory, and a conjectural “fractal cohomology theory” envisioned in work of the second author and of Lapidus and van Frankenhuijsen on complex fractal dimensions." @default.
- W2614403722 created "2017-05-26" @default.
- W2614403722 creator A5042734167 @default.
- W2614403722 creator A5055474739 @default.
- W2614403722 date "2017-01-01" @default.
- W2614403722 modified "2023-09-27" @default.
- W2614403722 title "Towards a Fractal Cohomology: Spectra of Polya–Hilbert Operators, Regularized Determinants and Riemann Zeros" @default.
- W2614403722 cites W100256152 @default.
- W2614403722 cites W1698412016 @default.
- W2614403722 cites W1988915620 @default.
- W2614403722 cites W1991057622 @default.
- W2614403722 cites W2000430822 @default.
- W2614403722 cites W2015585803 @default.
- W2614403722 cites W2025995346 @default.
- W2614403722 cites W2064003955 @default.
- W2614403722 cites W2069578244 @default.
- W2614403722 cites W2078381643 @default.
- W2614403722 cites W2087736116 @default.
- W2614403722 cites W2152043396 @default.
- W2614403722 cites W2168640015 @default.
- W2614403722 cites W2962690071 @default.
- W2614403722 cites W2986240365 @default.
- W2614403722 cites W3104926476 @default.
- W2614403722 cites W4211126889 @default.
- W2614403722 cites W4230832653 @default.
- W2614403722 cites W4238350589 @default.
- W2614403722 cites W4248573578 @default.
- W2614403722 cites W4248986540 @default.
- W2614403722 cites W4361793987 @default.
- W2614403722 cites W46125183 @default.
- W2614403722 cites W634011137 @default.
- W2614403722 doi "https://doi.org/10.1007/978-3-319-59969-4_3" @default.
- W2614403722 hasPublicationYear "2017" @default.
- W2614403722 type Work @default.
- W2614403722 sameAs 2614403722 @default.
- W2614403722 citedByCount "1" @default.
- W2614403722 countsByYear W26144037222018 @default.
- W2614403722 crossrefType "book-chapter" @default.
- W2614403722 hasAuthorship W2614403722A5042734167 @default.
- W2614403722 hasAuthorship W2614403722A5055474739 @default.
- W2614403722 hasBestOaLocation W26144037222 @default.
- W2614403722 hasConcept C104317684 @default.
- W2614403722 hasConcept C136119220 @default.
- W2614403722 hasConcept C158448853 @default.
- W2614403722 hasConcept C17020691 @default.
- W2614403722 hasConcept C185592680 @default.
- W2614403722 hasConcept C190333341 @default.
- W2614403722 hasConcept C199479865 @default.
- W2614403722 hasConcept C202444582 @default.
- W2614403722 hasConcept C2780990831 @default.
- W2614403722 hasConcept C33923547 @default.
- W2614403722 hasConcept C35235930 @default.
- W2614403722 hasConcept C55493867 @default.
- W2614403722 hasConcept C78606066 @default.
- W2614403722 hasConcept C86339819 @default.
- W2614403722 hasConceptScore W2614403722C104317684 @default.
- W2614403722 hasConceptScore W2614403722C136119220 @default.
- W2614403722 hasConceptScore W2614403722C158448853 @default.
- W2614403722 hasConceptScore W2614403722C17020691 @default.
- W2614403722 hasConceptScore W2614403722C185592680 @default.
- W2614403722 hasConceptScore W2614403722C190333341 @default.
- W2614403722 hasConceptScore W2614403722C199479865 @default.
- W2614403722 hasConceptScore W2614403722C202444582 @default.
- W2614403722 hasConceptScore W2614403722C2780990831 @default.
- W2614403722 hasConceptScore W2614403722C33923547 @default.
- W2614403722 hasConceptScore W2614403722C35235930 @default.
- W2614403722 hasConceptScore W2614403722C55493867 @default.
- W2614403722 hasConceptScore W2614403722C78606066 @default.
- W2614403722 hasConceptScore W2614403722C86339819 @default.
- W2614403722 hasLocation W26144037221 @default.
- W2614403722 hasLocation W26144037222 @default.
- W2614403722 hasOpenAccess W2614403722 @default.
- W2614403722 hasPrimaryLocation W26144037221 @default.
- W2614403722 hasRelatedWork W2056663089 @default.
- W2614403722 hasRelatedWork W2072927674 @default.
- W2614403722 hasRelatedWork W2088064674 @default.
- W2614403722 hasRelatedWork W2897153210 @default.
- W2614403722 hasRelatedWork W2964004067 @default.
- W2614403722 hasRelatedWork W2974554826 @default.
- W2614403722 hasRelatedWork W3026358768 @default.
- W2614403722 hasRelatedWork W3158343799 @default.
- W2614403722 hasRelatedWork W776536739 @default.
- W2614403722 hasRelatedWork W1651480512 @default.
- W2614403722 isParatext "false" @default.
- W2614403722 isRetracted "false" @default.
- W2614403722 magId "2614403722" @default.
- W2614403722 workType "book-chapter" @default.