Matches in SemOpenAlex for { <https://semopenalex.org/work/W2615461152> ?p ?o ?g. }
- W2615461152 endingPage "7" @default.
- W2615461152 startingPage "1" @default.
- W2615461152 abstract "Hardware-based computer vision accelerators are going to be an important part of future mobile devices to satisfy the low power and data processing demand. In order to comprehend a high power potency and high turnout, the accelerator design will be massively parallelized and tailored to vision process that is a plus over software-based solutions and all-purpose hardware. In this research Spiking neural networks (SNNs) arrange to emulate scientific discipline within the class brain supported neurons parallel arrays that communicate through spike events. The opportunity to perform embedded neuromorphic circuits is supplied by SNNs, with low power consumption and high correspondence in comparison with the normal laptop paradigms of John von Neumann. Even so, the poor property and modularity shortage as shown in ancient neuron cell interconnect implementations supported shared bus topologies is barring climbable hardware operations of SNNs. In order to effectively apply SNN traffic patterns and neighborhood among neurons in the current design the Hybrid Network on Chip (H-NoC) design integrates a spike traffic compression technique, thus dropping traffic overhead and up turnout on the network provides world traffic hundreds to sustain turnout underneath bursting activity. The planned system reduces overhead and improves the performance through native routing of the neutron cell facilities that are the gifts within constant tile facility. This will increase the potency of the system. The scalability of the adopted H-NoC approach under completely different situations is shown by analytical results show, while synthesis and simulation analysis reveal, area of low-cost, and delay for each cluster severally. This methodology finds its application in various sector such as medical image processing and bio signal processing." @default.
- W2615461152 created "2017-05-26" @default.
- W2615461152 creator A5069096147 @default.
- W2615461152 creator A5079515392 @default.
- W2615461152 creator A5091677033 @default.
- W2615461152 date "2017-04-01" @default.
- W2615461152 modified "2023-10-16" @default.
- W2615461152 title "Neural Network Architecture for Hybrid Network-On-Chip using Scalable Spiking for Man Machine Interface" @default.
- W2615461152 cites W1575559507 @default.
- W2615461152 cites W1596035946 @default.
- W2615461152 cites W1991383860 @default.
- W2615461152 cites W1998071216 @default.
- W2615461152 cites W2032832574 @default.
- W2615461152 cites W2046500578 @default.
- W2615461152 cites W2055473437 @default.
- W2615461152 cites W2077897543 @default.
- W2615461152 cites W2087058693 @default.
- W2615461152 cites W2088192327 @default.
- W2615461152 cites W2107994122 @default.
- W2615461152 cites W2112090702 @default.
- W2615461152 cites W2112796928 @default.
- W2615461152 cites W2121458485 @default.
- W2615461152 cites W2130360162 @default.
- W2615461152 cites W2138913040 @default.
- W2615461152 cites W2156640153 @default.
- W2615461152 cites W2164727176 @default.
- W2615461152 cites W2169541086 @default.
- W2615461152 cites W3101658768 @default.
- W2615461152 cites W4205608751 @default.
- W2615461152 doi "https://doi.org/10.17485/ijst/2017/v10i16/113492" @default.
- W2615461152 hasPublicationYear "2017" @default.
- W2615461152 type Work @default.
- W2615461152 sameAs 2615461152 @default.
- W2615461152 citedByCount "1" @default.
- W2615461152 countsByYear W26154611522022 @default.
- W2615461152 crossrefType "journal-article" @default.
- W2615461152 hasAuthorship W2615461152A5069096147 @default.
- W2615461152 hasAuthorship W2615461152A5079515392 @default.
- W2615461152 hasAuthorship W2615461152A5091677033 @default.
- W2615461152 hasBestOaLocation W26154611521 @default.
- W2615461152 hasConcept C103987645 @default.
- W2615461152 hasConcept C111919701 @default.
- W2615461152 hasConcept C113843644 @default.
- W2615461152 hasConcept C11731999 @default.
- W2615461152 hasConcept C118524514 @default.
- W2615461152 hasConcept C123657996 @default.
- W2615461152 hasConcept C128519102 @default.
- W2615461152 hasConcept C129307140 @default.
- W2615461152 hasConcept C142362112 @default.
- W2615461152 hasConcept C149635348 @default.
- W2615461152 hasConcept C153349607 @default.
- W2615461152 hasConcept C154945302 @default.
- W2615461152 hasConcept C157915830 @default.
- W2615461152 hasConcept C165005293 @default.
- W2615461152 hasConcept C172173386 @default.
- W2615461152 hasConcept C193415008 @default.
- W2615461152 hasConcept C31258907 @default.
- W2615461152 hasConcept C41008148 @default.
- W2615461152 hasConcept C48044578 @default.
- W2615461152 hasConcept C50644808 @default.
- W2615461152 hasConcept C76155785 @default.
- W2615461152 hasConceptScore W2615461152C103987645 @default.
- W2615461152 hasConceptScore W2615461152C111919701 @default.
- W2615461152 hasConceptScore W2615461152C113843644 @default.
- W2615461152 hasConceptScore W2615461152C11731999 @default.
- W2615461152 hasConceptScore W2615461152C118524514 @default.
- W2615461152 hasConceptScore W2615461152C123657996 @default.
- W2615461152 hasConceptScore W2615461152C128519102 @default.
- W2615461152 hasConceptScore W2615461152C129307140 @default.
- W2615461152 hasConceptScore W2615461152C142362112 @default.
- W2615461152 hasConceptScore W2615461152C149635348 @default.
- W2615461152 hasConceptScore W2615461152C153349607 @default.
- W2615461152 hasConceptScore W2615461152C154945302 @default.
- W2615461152 hasConceptScore W2615461152C157915830 @default.
- W2615461152 hasConceptScore W2615461152C165005293 @default.
- W2615461152 hasConceptScore W2615461152C172173386 @default.
- W2615461152 hasConceptScore W2615461152C193415008 @default.
- W2615461152 hasConceptScore W2615461152C31258907 @default.
- W2615461152 hasConceptScore W2615461152C41008148 @default.
- W2615461152 hasConceptScore W2615461152C48044578 @default.
- W2615461152 hasConceptScore W2615461152C50644808 @default.
- W2615461152 hasConceptScore W2615461152C76155785 @default.
- W2615461152 hasIssue "16" @default.
- W2615461152 hasLocation W26154611521 @default.
- W2615461152 hasOpenAccess W2615461152 @default.
- W2615461152 hasPrimaryLocation W26154611521 @default.
- W2615461152 hasRelatedWork W1975010174 @default.
- W2615461152 hasRelatedWork W2063558432 @default.
- W2615461152 hasRelatedWork W2144563801 @default.
- W2615461152 hasRelatedWork W2160936959 @default.
- W2615461152 hasRelatedWork W2382623646 @default.
- W2615461152 hasRelatedWork W2615461152 @default.
- W2615461152 hasRelatedWork W2784141701 @default.
- W2615461152 hasRelatedWork W3198758847 @default.
- W2615461152 hasRelatedWork W396164270 @default.
- W2615461152 hasRelatedWork W4230458348 @default.
- W2615461152 hasVolume "10" @default.
- W2615461152 isParatext "false" @default.