Matches in SemOpenAlex for { <https://semopenalex.org/work/W2615671540> ?p ?o ?g. }
- W2615671540 endingPage "470" @default.
- W2615671540 startingPage "452" @default.
- W2615671540 abstract "In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces." @default.
- W2615671540 created "2017-05-26" @default.
- W2615671540 creator A5044329429 @default.
- W2615671540 creator A5056194756 @default.
- W2615671540 creator A5067488495 @default.
- W2615671540 date "2017-05-16" @default.
- W2615671540 modified "2023-09-30" @default.
- W2615671540 title "Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm–artificial neural network method" @default.
- W2615671540 cites W1800284196 @default.
- W2615671540 cites W1963726840 @default.
- W2615671540 cites W1980150461 @default.
- W2615671540 cites W1980998330 @default.
- W2615671540 cites W1982452902 @default.
- W2615671540 cites W1984233206 @default.
- W2615671540 cites W1988516572 @default.
- W2615671540 cites W2000309582 @default.
- W2615671540 cites W2009305377 @default.
- W2615671540 cites W2017593540 @default.
- W2615671540 cites W2018121270 @default.
- W2615671540 cites W2024198044 @default.
- W2615671540 cites W2026783534 @default.
- W2615671540 cites W2039100759 @default.
- W2615671540 cites W2046482211 @default.
- W2615671540 cites W2051205739 @default.
- W2615671540 cites W2062329981 @default.
- W2615671540 cites W2072400988 @default.
- W2615671540 cites W2072473860 @default.
- W2615671540 cites W2073127975 @default.
- W2615671540 cites W2073825174 @default.
- W2615671540 cites W2075750644 @default.
- W2615671540 cites W2078937703 @default.
- W2615671540 cites W2094680200 @default.
- W2615671540 cites W2119701587 @default.
- W2615671540 cites W2125818553 @default.
- W2615671540 cites W2128720617 @default.
- W2615671540 cites W2140795939 @default.
- W2615671540 cites W2200685443 @default.
- W2615671540 cites W3023410082 @default.
- W2615671540 doi "https://doi.org/10.1080/0305215x.2017.1323889" @default.
- W2615671540 hasPublicationYear "2017" @default.
- W2615671540 type Work @default.
- W2615671540 sameAs 2615671540 @default.
- W2615671540 citedByCount "14" @default.
- W2615671540 countsByYear W26156715402018 @default.
- W2615671540 countsByYear W26156715402019 @default.
- W2615671540 countsByYear W26156715402020 @default.
- W2615671540 countsByYear W26156715402021 @default.
- W2615671540 countsByYear W26156715402022 @default.
- W2615671540 countsByYear W26156715402023 @default.
- W2615671540 crossrefType "journal-article" @default.
- W2615671540 hasAuthorship W2615671540A5044329429 @default.
- W2615671540 hasAuthorship W2615671540A5056194756 @default.
- W2615671540 hasAuthorship W2615671540A5067488495 @default.
- W2615671540 hasConcept C105795698 @default.
- W2615671540 hasConcept C11413529 @default.
- W2615671540 hasConcept C119857082 @default.
- W2615671540 hasConcept C126255220 @default.
- W2615671540 hasConcept C127413603 @default.
- W2615671540 hasConcept C14036430 @default.
- W2615671540 hasConcept C154945302 @default.
- W2615671540 hasConcept C159985019 @default.
- W2615671540 hasConcept C186394612 @default.
- W2615671540 hasConcept C192562407 @default.
- W2615671540 hasConcept C19499675 @default.
- W2615671540 hasConcept C2775838644 @default.
- W2615671540 hasConcept C33923547 @default.
- W2615671540 hasConcept C41008148 @default.
- W2615671540 hasConcept C50644808 @default.
- W2615671540 hasConcept C78458016 @default.
- W2615671540 hasConcept C86803240 @default.
- W2615671540 hasConcept C8880873 @default.
- W2615671540 hasConceptScore W2615671540C105795698 @default.
- W2615671540 hasConceptScore W2615671540C11413529 @default.
- W2615671540 hasConceptScore W2615671540C119857082 @default.
- W2615671540 hasConceptScore W2615671540C126255220 @default.
- W2615671540 hasConceptScore W2615671540C127413603 @default.
- W2615671540 hasConceptScore W2615671540C14036430 @default.
- W2615671540 hasConceptScore W2615671540C154945302 @default.
- W2615671540 hasConceptScore W2615671540C159985019 @default.
- W2615671540 hasConceptScore W2615671540C186394612 @default.
- W2615671540 hasConceptScore W2615671540C192562407 @default.
- W2615671540 hasConceptScore W2615671540C19499675 @default.
- W2615671540 hasConceptScore W2615671540C2775838644 @default.
- W2615671540 hasConceptScore W2615671540C33923547 @default.
- W2615671540 hasConceptScore W2615671540C41008148 @default.
- W2615671540 hasConceptScore W2615671540C50644808 @default.
- W2615671540 hasConceptScore W2615671540C78458016 @default.
- W2615671540 hasConceptScore W2615671540C86803240 @default.
- W2615671540 hasConceptScore W2615671540C8880873 @default.
- W2615671540 hasIssue "3" @default.
- W2615671540 hasLocation W26156715401 @default.
- W2615671540 hasOpenAccess W2615671540 @default.
- W2615671540 hasPrimaryLocation W26156715401 @default.
- W2615671540 hasRelatedWork W2077443079 @default.
- W2615671540 hasRelatedWork W2091111289 @default.
- W2615671540 hasRelatedWork W2337062658 @default.
- W2615671540 hasRelatedWork W2356957943 @default.
- W2615671540 hasRelatedWork W2368147624 @default.