Matches in SemOpenAlex for { <https://semopenalex.org/work/W2615673769> ?p ?o ?g. }
- W2615673769 endingPage "680" @default.
- W2615673769 startingPage "669" @default.
- W2615673769 abstract "Abstract Short-term passenger flow forecasting is one of the crucial components in transportation systems with data support for transportation planning and management. For forecasting bus passenger flow, this paper proposes a multi-pattern deep fusion (MPDF) approach that is constructed by fusing deep belief networks (DBNs) corresponding to multiple patterns. The dataset of the short-term bus passenger flow is first segmented into different clusters by an affinity propagation algorithm. The passenger flow distribution of these clusters is subsequently analyzed for identifying different patterns. In each pattern, a DBN is developed as a deep representation for the passenger flow. The outputs of the DBNs are finally fused by chronological order rearrangement. Taking a bus line in Guangzhou city of China as an example, the present MPDF approach is modeled. Five approaches, non-parametric and parametric models, are applied to the same case for comparison. The results show that, the proposed model overwhelms all the peer methods in terms of mean absolute percentage error, root-mean-square error, and determination coefficient criteria. In addition, there exists significant difference between the addressed model and the comparison models. It is recommended from the present study that the deep learning technique incorporating the pattern analysis is promising in forecasting the short-term passenger flow." @default.
- W2615673769 created "2017-05-26" @default.
- W2615673769 creator A5010243176 @default.
- W2615673769 creator A5052886607 @default.
- W2615673769 creator A5053958450 @default.
- W2615673769 creator A5078523354 @default.
- W2615673769 creator A5088547338 @default.
- W2615673769 date "2017-09-01" @default.
- W2615673769 modified "2023-10-17" @default.
- W2615673769 title "A multi-pattern deep fusion model for short-term bus passenger flow forecasting" @default.
- W2615673769 cites W1918916900 @default.
- W2615673769 cites W1978149730 @default.
- W2615673769 cites W1987728022 @default.
- W2615673769 cites W1989130706 @default.
- W2615673769 cites W1995687640 @default.
- W2615673769 cites W2002841906 @default.
- W2615673769 cites W2010389255 @default.
- W2615673769 cites W2025391890 @default.
- W2615673769 cites W2026430219 @default.
- W2615673769 cites W2047198484 @default.
- W2615673769 cites W2049523807 @default.
- W2615673769 cites W2049952439 @default.
- W2615673769 cites W2060446948 @default.
- W2615673769 cites W2082454007 @default.
- W2615673769 cites W2084497615 @default.
- W2615673769 cites W2085987121 @default.
- W2615673769 cites W2093840468 @default.
- W2615673769 cites W2136922672 @default.
- W2615673769 cites W2142382652 @default.
- W2615673769 cites W2165232124 @default.
- W2615673769 cites W2165991108 @default.
- W2615673769 cites W2166610567 @default.
- W2615673769 cites W2170785963 @default.
- W2615673769 cites W2181125631 @default.
- W2615673769 cites W2287029277 @default.
- W2615673769 cites W2289846183 @default.
- W2615673769 cites W2301005476 @default.
- W2615673769 cites W2317582298 @default.
- W2615673769 cites W2507968393 @default.
- W2615673769 cites W4231109964 @default.
- W2615673769 doi "https://doi.org/10.1016/j.asoc.2017.05.011" @default.
- W2615673769 hasPublicationYear "2017" @default.
- W2615673769 type Work @default.
- W2615673769 sameAs 2615673769 @default.
- W2615673769 citedByCount "73" @default.
- W2615673769 countsByYear W26156737692017 @default.
- W2615673769 countsByYear W26156737692018 @default.
- W2615673769 countsByYear W26156737692019 @default.
- W2615673769 countsByYear W26156737692020 @default.
- W2615673769 countsByYear W26156737692021 @default.
- W2615673769 countsByYear W26156737692022 @default.
- W2615673769 countsByYear W26156737692023 @default.
- W2615673769 crossrefType "journal-article" @default.
- W2615673769 hasAuthorship W2615673769A5010243176 @default.
- W2615673769 hasAuthorship W2615673769A5052886607 @default.
- W2615673769 hasAuthorship W2615673769A5053958450 @default.
- W2615673769 hasAuthorship W2615673769A5078523354 @default.
- W2615673769 hasAuthorship W2615673769A5088547338 @default.
- W2615673769 hasConcept C121332964 @default.
- W2615673769 hasConcept C138885662 @default.
- W2615673769 hasConcept C154945302 @default.
- W2615673769 hasConcept C158525013 @default.
- W2615673769 hasConcept C2524010 @default.
- W2615673769 hasConcept C33923547 @default.
- W2615673769 hasConcept C38349280 @default.
- W2615673769 hasConcept C41008148 @default.
- W2615673769 hasConcept C41895202 @default.
- W2615673769 hasConcept C61797465 @default.
- W2615673769 hasConcept C62520636 @default.
- W2615673769 hasConcept C79403827 @default.
- W2615673769 hasConceptScore W2615673769C121332964 @default.
- W2615673769 hasConceptScore W2615673769C138885662 @default.
- W2615673769 hasConceptScore W2615673769C154945302 @default.
- W2615673769 hasConceptScore W2615673769C158525013 @default.
- W2615673769 hasConceptScore W2615673769C2524010 @default.
- W2615673769 hasConceptScore W2615673769C33923547 @default.
- W2615673769 hasConceptScore W2615673769C38349280 @default.
- W2615673769 hasConceptScore W2615673769C41008148 @default.
- W2615673769 hasConceptScore W2615673769C41895202 @default.
- W2615673769 hasConceptScore W2615673769C61797465 @default.
- W2615673769 hasConceptScore W2615673769C62520636 @default.
- W2615673769 hasConceptScore W2615673769C79403827 @default.
- W2615673769 hasFunder F4320321543 @default.
- W2615673769 hasLocation W26156737691 @default.
- W2615673769 hasOpenAccess W2615673769 @default.
- W2615673769 hasPrimaryLocation W26156737691 @default.
- W2615673769 hasRelatedWork W1519398290 @default.
- W2615673769 hasRelatedWork W2046095386 @default.
- W2615673769 hasRelatedWork W2056851291 @default.
- W2615673769 hasRelatedWork W2363207358 @default.
- W2615673769 hasRelatedWork W2363789696 @default.
- W2615673769 hasRelatedWork W2372022541 @default.
- W2615673769 hasRelatedWork W2375921219 @default.
- W2615673769 hasRelatedWork W2604536237 @default.
- W2615673769 hasRelatedWork W2889205661 @default.
- W2615673769 hasRelatedWork W2972412491 @default.
- W2615673769 hasVolume "58" @default.
- W2615673769 isParatext "false" @default.