Matches in SemOpenAlex for { <https://semopenalex.org/work/W2615674821> ?p ?o ?g. }
- W2615674821 endingPage "e16217" @default.
- W2615674821 startingPage "e16217" @default.
- W2615674821 abstract "Lanthanide-doped upconversion nanocrystals (UCNCs) have recently become an attractive nonlinear fluorescence material for use in bioimaging because of their tunable spectral characteristics and exceptional photostability. Plasmonic materials are often introduced into the vicinity of UCNCs to increase their emission intensity by means of enlarging the absorption cross-section and accelerating the radiative decay rate. Moreover, plasmonic nanostructures (e.g., gold nanorods, GNRs) can also influence the polarization state of the UC fluorescence—an effect that is of fundamental importance for fluorescence polarization-based imaging methods yet has not been discussed previously. To study this effect, we synthesized GNR@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures with precise control over the thickness of the SiO2 shell. We evaluated the shell thickness-dependent plasmonic enhancement of the emission intensity in ensemble and studied the plasmonic modulation of the emission polarization at the single-particle level. The hybrid plasmonic UC nanostructures with an optimal shell thickness exhibit an improved bioimaging performance compared with bare UCNCs, and we observed a polarized nature of the light at both UC emission bands, which stems from the relationship between the excitation polarization and GNR orientation. We used electrodynamic simulations combined with Förster resonance energy transfer theory to fully explain the observed effect. Our results provide extensive insights into how the coherent interaction between the emission dipoles of UCNCs and the plasmonic dipoles of the GNR determines the emission polarization state in various situations and thus open the way to the accurate control of the UC emission anisotropy for a wide range of bioimaging and biosensing applications. Plasmon-enhanced nanostructures can modify both the emission intensity and polarizationstate of light for bioimaging applications. Rare-earth-doped nanocrystals have become sought-after materials for cellular bioprobes because of their long emission lifetimes and low cytotoxicity. Dang Yuan Lei from the Hong Kong Polytechnic University and colleagues have now discovered how to make these probes even brighter by coupling them to gold nanorods materials that can induce field-enhanced fluorescence through surface plasmon resonances. They optimized this effect by systematically varying the thickness of a protective silica coating sandwiched between the gold nanorods and the doped nanocrystals. Intriguingly, by exciting a single hybrid nanostructure with a polarized laser, the team controlled the polarization of the emitted fluorescent light–an unexpected effect that could lead to new applications using polarization-sensitive diagnostic imaging." @default.
- W2615674821 created "2017-05-26" @default.
- W2615674821 creator A5002121338 @default.
- W2615674821 creator A5012908117 @default.
- W2615674821 creator A5018743391 @default.
- W2615674821 creator A5041803361 @default.
- W2615674821 creator A5045818251 @default.
- W2615674821 creator A5053606207 @default.
- W2615674821 creator A5054377073 @default.
- W2615674821 creator A5064322463 @default.
- W2615674821 creator A5067386518 @default.
- W2615674821 creator A5077219545 @default.
- W2615674821 creator A5089725500 @default.
- W2615674821 date "2016-09-06" @default.
- W2615674821 modified "2023-10-18" @default.
- W2615674821 title "Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures" @default.
- W2615674821 cites W151196505 @default.
- W2615674821 cites W1653228505 @default.
- W2615674821 cites W1830616868 @default.
- W2615674821 cites W1967293707 @default.
- W2615674821 cites W1979933436 @default.
- W2615674821 cites W198600933 @default.
- W2615674821 cites W1990321413 @default.
- W2615674821 cites W1991056222 @default.
- W2615674821 cites W2000393766 @default.
- W2615674821 cites W2003903292 @default.
- W2615674821 cites W2014323899 @default.
- W2615674821 cites W2017537990 @default.
- W2615674821 cites W2018958161 @default.
- W2615674821 cites W2019289715 @default.
- W2615674821 cites W2029172903 @default.
- W2615674821 cites W2029399083 @default.
- W2615674821 cites W2038668303 @default.
- W2615674821 cites W2048157217 @default.
- W2615674821 cites W2049716172 @default.
- W2615674821 cites W2051522803 @default.
- W2615674821 cites W2056069790 @default.
- W2615674821 cites W2056324400 @default.
- W2615674821 cites W2058682697 @default.
- W2615674821 cites W2058942583 @default.
- W2615674821 cites W2060501383 @default.
- W2615674821 cites W2065636005 @default.
- W2615674821 cites W2071532523 @default.
- W2615674821 cites W2073700389 @default.
- W2615674821 cites W2078450637 @default.
- W2615674821 cites W2079394332 @default.
- W2615674821 cites W2087295443 @default.
- W2615674821 cites W2087800081 @default.
- W2615674821 cites W2088038754 @default.
- W2615674821 cites W2090550883 @default.
- W2615674821 cites W2095039986 @default.
- W2615674821 cites W2097788151 @default.
- W2615674821 cites W2099778617 @default.
- W2615674821 cites W2105844099 @default.
- W2615674821 cites W2114015670 @default.
- W2615674821 cites W2116381594 @default.
- W2615674821 cites W2119887057 @default.
- W2615674821 cites W2122296545 @default.
- W2615674821 cites W2133313285 @default.
- W2615674821 cites W2141193219 @default.
- W2615674821 cites W2142249065 @default.
- W2615674821 cites W2157522738 @default.
- W2615674821 cites W2157740545 @default.
- W2615674821 cites W2159945895 @default.
- W2615674821 cites W2164172819 @default.
- W2615674821 cites W2169828908 @default.
- W2615674821 cites W2263474689 @default.
- W2615674821 cites W2281996747 @default.
- W2615674821 cites W2313273741 @default.
- W2615674821 cites W2321710075 @default.
- W2615674821 cites W2322981765 @default.
- W2615674821 cites W2325559191 @default.
- W2615674821 cites W2327289534 @default.
- W2615674821 cites W2328695735 @default.
- W2615674821 cites W2333865570 @default.
- W2615674821 cites W2397147793 @default.
- W2615674821 cites W3099728125 @default.
- W2615674821 cites W4251023354 @default.
- W2615674821 cites W4253930065 @default.
- W2615674821 doi "https://doi.org/10.1038/lsa.2016.217" @default.
- W2615674821 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6062198" @default.
- W2615674821 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30167245" @default.
- W2615674821 hasPublicationYear "2016" @default.
- W2615674821 type Work @default.
- W2615674821 sameAs 2615674821 @default.
- W2615674821 citedByCount "138" @default.
- W2615674821 countsByYear W26156748212017 @default.
- W2615674821 countsByYear W26156748212018 @default.
- W2615674821 countsByYear W26156748212019 @default.
- W2615674821 countsByYear W26156748212020 @default.
- W2615674821 countsByYear W26156748212021 @default.
- W2615674821 countsByYear W26156748212022 @default.
- W2615674821 countsByYear W26156748212023 @default.
- W2615674821 crossrefType "journal-article" @default.
- W2615674821 hasAuthorship W2615674821A5002121338 @default.
- W2615674821 hasAuthorship W2615674821A5012908117 @default.
- W2615674821 hasAuthorship W2615674821A5018743391 @default.
- W2615674821 hasAuthorship W2615674821A5041803361 @default.