Matches in SemOpenAlex for { <https://semopenalex.org/work/W2616100520> ?p ?o ?g. }
- W2616100520 endingPage "149" @default.
- W2616100520 startingPage "136" @default.
- W2616100520 abstract "Abstract Financial Time Series Prediction is a complex and a challenging problem. In this paper, we propose two 3-stage hybrid prediction models wherein Chaos theory is used to construct phase space (Stage-1) followed by invoking Multi-Layer Perceptron (MLP) (Stage-2) and Multi-Objective Particle Swarm Optimization (MOPSO) / elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) (Stage-3) in tandem. In both of these hybrid models, Stage-3 improves the prediction yielded by stage-2. The effectiveness of the proposed models is tested on financial datasets including the exchange rates data of US Dollar (USD) versus Japanese Yen (JPY), British Pound (GBP), Euro (EUR), and Gold price in terms of USD. From the results, it is concluded that Chaos+MLP+NSGA-II hybrid yielded better predictions than the other three-stage hybrid models: Chaos+MLP+MOPSO and Chaos+MLP+PSO, and Two-stage hybrid models: Chaos+PSO, Chaos+MOPSO and Chaos+NSGA-II in terms of both Mean Squared Error (MSE) and Directional Change Statistic (Dstat). Theil's inequality coefficient computed also confirms the superiority of the Chaos+MLP+NSGA-II hybrid over the Chaos+MLP+MOPSO across all datasets. Finally, Diebold-Mariano test indicates that the performance of Chaos+MLP+NSGA-II hybrid is statistically significant than the Chaos+MLP+MOPSO and other hybrids across all datasets. The results of these models are also compared with the two-stage hybrids found in literature [1,2] (Pradeepkumar and Ravi, 2014, 2017). These results are encouraging and suggest further application of these hybrids to other financial and scientific time series prediction problems in the future." @default.
- W2616100520 created "2017-05-26" @default.
- W2616100520 creator A5003565723 @default.
- W2616100520 creator A5070430624 @default.
- W2616100520 creator A5088394271 @default.
- W2616100520 date "2017-10-01" @default.
- W2616100520 modified "2023-10-01" @default.
- W2616100520 title "Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms" @default.
- W2616100520 cites W1069790386 @default.
- W2616100520 cites W1504141014 @default.
- W2616100520 cites W1539598433 @default.
- W2616100520 cites W1549386224 @default.
- W2616100520 cites W1562430585 @default.
- W2616100520 cites W1586335931 @default.
- W2616100520 cites W1684962946 @default.
- W2616100520 cites W193891145 @default.
- W2616100520 cites W1976611654 @default.
- W2616100520 cites W1980933792 @default.
- W2616100520 cites W1984391316 @default.
- W2616100520 cites W1986528915 @default.
- W2616100520 cites W198699826 @default.
- W2616100520 cites W1990647126 @default.
- W2616100520 cites W1994296101 @default.
- W2616100520 cites W1996691629 @default.
- W2616100520 cites W1996940905 @default.
- W2616100520 cites W2008489336 @default.
- W2616100520 cites W2010461070 @default.
- W2616100520 cites W2022006693 @default.
- W2616100520 cites W2023342609 @default.
- W2616100520 cites W2037671496 @default.
- W2616100520 cites W2058092208 @default.
- W2616100520 cites W2061701011 @default.
- W2616100520 cites W2063072605 @default.
- W2616100520 cites W2073875037 @default.
- W2616100520 cites W2081028405 @default.
- W2616100520 cites W2081876825 @default.
- W2616100520 cites W2096877980 @default.
- W2616100520 cites W2106595237 @default.
- W2616100520 cites W2116661285 @default.
- W2616100520 cites W2117014758 @default.
- W2616100520 cites W2124098825 @default.
- W2616100520 cites W2126105956 @default.
- W2616100520 cites W2126566747 @default.
- W2616100520 cites W2134918899 @default.
- W2616100520 cites W2135232426 @default.
- W2616100520 cites W2142635246 @default.
- W2616100520 cites W2144153633 @default.
- W2616100520 cites W2152195021 @default.
- W2616100520 cites W2154326182 @default.
- W2616100520 cites W2154830650 @default.
- W2616100520 cites W2165171393 @default.
- W2616100520 cites W2165299997 @default.
- W2616100520 cites W2217624452 @default.
- W2616100520 cites W222543348 @default.
- W2616100520 cites W2236361361 @default.
- W2616100520 cites W2334014378 @default.
- W2616100520 cites W2594961767 @default.
- W2616100520 cites W3179420158 @default.
- W2616100520 cites W4229652772 @default.
- W2616100520 cites W4235965783 @default.
- W2616100520 cites W4300402905 @default.
- W2616100520 cites W55667492 @default.
- W2616100520 cites W1545710019 @default.
- W2616100520 cites W1993387039 @default.
- W2616100520 doi "https://doi.org/10.1016/j.swevo.2017.05.003" @default.
- W2616100520 hasPublicationYear "2017" @default.
- W2616100520 type Work @default.
- W2616100520 sameAs 2616100520 @default.
- W2616100520 citedByCount "95" @default.
- W2616100520 countsByYear W26161005202017 @default.
- W2616100520 countsByYear W26161005202018 @default.
- W2616100520 countsByYear W26161005202019 @default.
- W2616100520 countsByYear W26161005202020 @default.
- W2616100520 countsByYear W26161005202021 @default.
- W2616100520 countsByYear W26161005202022 @default.
- W2616100520 countsByYear W26161005202023 @default.
- W2616100520 crossrefType "journal-article" @default.
- W2616100520 hasAuthorship W2616100520A5003565723 @default.
- W2616100520 hasAuthorship W2616100520A5070430624 @default.
- W2616100520 hasAuthorship W2616100520A5088394271 @default.
- W2616100520 hasConcept C10138342 @default.
- W2616100520 hasConcept C11413529 @default.
- W2616100520 hasConcept C127313418 @default.
- W2616100520 hasConcept C143724316 @default.
- W2616100520 hasConcept C151730666 @default.
- W2616100520 hasConcept C154945302 @default.
- W2616100520 hasConcept C159149176 @default.
- W2616100520 hasConcept C162324750 @default.
- W2616100520 hasConcept C178790620 @default.
- W2616100520 hasConcept C185592680 @default.
- W2616100520 hasConcept C2779227376 @default.
- W2616100520 hasConcept C2779374083 @default.
- W2616100520 hasConcept C38652104 @default.
- W2616100520 hasConcept C41008148 @default.
- W2616100520 hasConcept C50644808 @default.
- W2616100520 hasConcept C60908668 @default.
- W2616100520 hasConceptScore W2616100520C10138342 @default.
- W2616100520 hasConceptScore W2616100520C11413529 @default.