Matches in SemOpenAlex for { <https://semopenalex.org/work/W2616149690> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2616149690 abstract "Hearing Aids amplify sounds at certain frequencies to help patients, who have hearing loss, to improve the quality of life. Variables affecting hearing improvement include the characteristics of the patients' hearing loss, the characteristics of the hearing aids, and the characteristics of the frequencies. Although the two former characteristics have been studied, there are only limited studies predicting hearing gain, after wearing Hearing Aids, with utilizing all three characteristics. Therefore, we propose a new machine learning algorithm that can present the degree of hearing improvement expected from the wearing of hearing aids.The proposed algorithm consists of cascade structure, recurrent structure and deep network structure. For cascade structure, it reflects correlations between frequency bands. For recurrent structure, output variables in one particular network of frequency bands are reused as input variables for other networks. Furthermore, it is of deep network structure with many hidden layers. We denote such networks as cascade recurring deep network where training consists of two phases; cascade phase and tuning phase.When applied to medical records of 2,182 patients treated for hearing loss, the proposed algorithm reduced the error rate by 58% from the other neural networks.The proposed algorithm is a novel algorithm that can be utilized for signal or sequential data. Clinically, the proposed algorithm can serve as a medical assistance tool that fulfill the patients' satisfaction." @default.
- W2616149690 created "2017-05-26" @default.
- W2616149690 creator A5015458222 @default.
- W2616149690 creator A5036131511 @default.
- W2616149690 creator A5043830800 @default.
- W2616149690 creator A5050166537 @default.
- W2616149690 creator A5084934817 @default.
- W2616149690 date "2017-05-01" @default.
- W2616149690 modified "2023-10-06" @default.
- W2616149690 title "Cascade recurring deep networks for audible range prediction" @default.
- W2616149690 cites W183625566 @default.
- W2616149690 cites W2009784977 @default.
- W2616149690 cites W2032927332 @default.
- W2616149690 cites W2034678680 @default.
- W2616149690 cites W2039973366 @default.
- W2616149690 cites W2043951469 @default.
- W2616149690 cites W2061118057 @default.
- W2616149690 cites W2091432990 @default.
- W2616149690 cites W2099866409 @default.
- W2616149690 cites W2104622689 @default.
- W2616149690 cites W2136922672 @default.
- W2616149690 cites W2194775991 @default.
- W2616149690 cites W2313053774 @default.
- W2616149690 doi "https://doi.org/10.1186/s12911-017-0452-2" @default.
- W2616149690 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5444043" @default.
- W2616149690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28539112" @default.
- W2616149690 hasPublicationYear "2017" @default.
- W2616149690 type Work @default.
- W2616149690 sameAs 2616149690 @default.
- W2616149690 citedByCount "3" @default.
- W2616149690 countsByYear W26161496902017 @default.
- W2616149690 countsByYear W26161496902018 @default.
- W2616149690 countsByYear W26161496902020 @default.
- W2616149690 crossrefType "journal-article" @default.
- W2616149690 hasAuthorship W2616149690A5015458222 @default.
- W2616149690 hasAuthorship W2616149690A5036131511 @default.
- W2616149690 hasAuthorship W2616149690A5043830800 @default.
- W2616149690 hasAuthorship W2616149690A5050166537 @default.
- W2616149690 hasAuthorship W2616149690A5084934817 @default.
- W2616149690 hasBestOaLocation W26161496901 @default.
- W2616149690 hasConcept C108583219 @default.
- W2616149690 hasConcept C11413529 @default.
- W2616149690 hasConcept C127413603 @default.
- W2616149690 hasConcept C146978453 @default.
- W2616149690 hasConcept C154945302 @default.
- W2616149690 hasConcept C199360897 @default.
- W2616149690 hasConcept C204323151 @default.
- W2616149690 hasConcept C2779843651 @default.
- W2616149690 hasConcept C2780493683 @default.
- W2616149690 hasConcept C2780801066 @default.
- W2616149690 hasConcept C28490314 @default.
- W2616149690 hasConcept C34146451 @default.
- W2616149690 hasConcept C41008148 @default.
- W2616149690 hasConcept C42360764 @default.
- W2616149690 hasConcept C50644808 @default.
- W2616149690 hasConcept C548259974 @default.
- W2616149690 hasConcept C71924100 @default.
- W2616149690 hasConceptScore W2616149690C108583219 @default.
- W2616149690 hasConceptScore W2616149690C11413529 @default.
- W2616149690 hasConceptScore W2616149690C127413603 @default.
- W2616149690 hasConceptScore W2616149690C146978453 @default.
- W2616149690 hasConceptScore W2616149690C154945302 @default.
- W2616149690 hasConceptScore W2616149690C199360897 @default.
- W2616149690 hasConceptScore W2616149690C204323151 @default.
- W2616149690 hasConceptScore W2616149690C2779843651 @default.
- W2616149690 hasConceptScore W2616149690C2780493683 @default.
- W2616149690 hasConceptScore W2616149690C2780801066 @default.
- W2616149690 hasConceptScore W2616149690C28490314 @default.
- W2616149690 hasConceptScore W2616149690C34146451 @default.
- W2616149690 hasConceptScore W2616149690C41008148 @default.
- W2616149690 hasConceptScore W2616149690C42360764 @default.
- W2616149690 hasConceptScore W2616149690C50644808 @default.
- W2616149690 hasConceptScore W2616149690C548259974 @default.
- W2616149690 hasConceptScore W2616149690C71924100 @default.
- W2616149690 hasIssue "S1" @default.
- W2616149690 hasLocation W26161496901 @default.
- W2616149690 hasLocation W26161496902 @default.
- W2616149690 hasLocation W26161496903 @default.
- W2616149690 hasLocation W26161496904 @default.
- W2616149690 hasLocation W26161496905 @default.
- W2616149690 hasOpenAccess W2616149690 @default.
- W2616149690 hasPrimaryLocation W26161496901 @default.
- W2616149690 hasRelatedWork W2126887587 @default.
- W2616149690 hasRelatedWork W2356237567 @default.
- W2616149690 hasRelatedWork W2731899572 @default.
- W2616149690 hasRelatedWork W2939353110 @default.
- W2616149690 hasRelatedWork W3009238340 @default.
- W2616149690 hasRelatedWork W3215138031 @default.
- W2616149690 hasRelatedWork W4308081923 @default.
- W2616149690 hasRelatedWork W4321369474 @default.
- W2616149690 hasRelatedWork W4327774331 @default.
- W2616149690 hasRelatedWork W4360585206 @default.
- W2616149690 hasVolume "17" @default.
- W2616149690 isParatext "false" @default.
- W2616149690 isRetracted "false" @default.
- W2616149690 magId "2616149690" @default.
- W2616149690 workType "article" @default.