Matches in SemOpenAlex for { <https://semopenalex.org/work/W2616402743> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2616402743 endingPage "375" @default.
- W2616402743 startingPage "361" @default.
- W2616402743 abstract "The conjugate Euler polynomials E~n (x) are defined by the application of the Hilbert transform to the (periodic) Euler polynomials εn(x), namely E~n (x) := H2εn(x), x ∈ [0, 1). In this paper an analogue of the Boole summation formula is given, where the Euler polynomials are replaced by the conjugate Euler polynomials. As an application, partial fraction expansions are given from which an Euler-type formula for L(2m) can be deduced." @default.
- W2616402743 created "2017-05-26" @default.
- W2616402743 creator A5057575988 @default.
- W2616402743 date "1998-01-01" @default.
- W2616402743 modified "2023-09-25" @default.
- W2616402743 title "A Boole-Type Formula Involving Conjugate Euler Polynomials" @default.
- W2616402743 doi "https://doi.org/10.1484/m.sths-eb.4.2017051" @default.
- W2616402743 hasPublicationYear "1998" @default.
- W2616402743 type Work @default.
- W2616402743 sameAs 2616402743 @default.
- W2616402743 citedByCount "1" @default.
- W2616402743 crossrefType "book-chapter" @default.
- W2616402743 hasAuthorship W2616402743A5057575988 @default.
- W2616402743 hasConcept C10628310 @default.
- W2616402743 hasConcept C134306372 @default.
- W2616402743 hasConcept C18903297 @default.
- W2616402743 hasConcept C197336794 @default.
- W2616402743 hasConcept C202444582 @default.
- W2616402743 hasConcept C21736991 @default.
- W2616402743 hasConcept C2776716506 @default.
- W2616402743 hasConcept C2777299769 @default.
- W2616402743 hasConcept C33923547 @default.
- W2616402743 hasConcept C43176163 @default.
- W2616402743 hasConcept C45542137 @default.
- W2616402743 hasConcept C52537462 @default.
- W2616402743 hasConcept C62884695 @default.
- W2616402743 hasConcept C86607863 @default.
- W2616402743 hasConcept C86803240 @default.
- W2616402743 hasConceptScore W2616402743C10628310 @default.
- W2616402743 hasConceptScore W2616402743C134306372 @default.
- W2616402743 hasConceptScore W2616402743C18903297 @default.
- W2616402743 hasConceptScore W2616402743C197336794 @default.
- W2616402743 hasConceptScore W2616402743C202444582 @default.
- W2616402743 hasConceptScore W2616402743C21736991 @default.
- W2616402743 hasConceptScore W2616402743C2776716506 @default.
- W2616402743 hasConceptScore W2616402743C2777299769 @default.
- W2616402743 hasConceptScore W2616402743C33923547 @default.
- W2616402743 hasConceptScore W2616402743C43176163 @default.
- W2616402743 hasConceptScore W2616402743C45542137 @default.
- W2616402743 hasConceptScore W2616402743C52537462 @default.
- W2616402743 hasConceptScore W2616402743C62884695 @default.
- W2616402743 hasConceptScore W2616402743C86607863 @default.
- W2616402743 hasConceptScore W2616402743C86803240 @default.
- W2616402743 hasLocation W26164027431 @default.
- W2616402743 hasOpenAccess W2616402743 @default.
- W2616402743 hasPrimaryLocation W26164027431 @default.
- W2616402743 hasRelatedWork W2082411042 @default.
- W2616402743 hasRelatedWork W2104149594 @default.
- W2616402743 hasRelatedWork W2158074517 @default.
- W2616402743 hasRelatedWork W2165237086 @default.
- W2616402743 hasRelatedWork W2186919933 @default.
- W2616402743 hasRelatedWork W3014267443 @default.
- W2616402743 hasRelatedWork W3107211910 @default.
- W2616402743 hasRelatedWork W4300687067 @default.
- W2616402743 hasRelatedWork W4313408517 @default.
- W2616402743 hasRelatedWork W3009963164 @default.
- W2616402743 isParatext "false" @default.
- W2616402743 isRetracted "false" @default.
- W2616402743 magId "2616402743" @default.
- W2616402743 workType "book-chapter" @default.