Matches in SemOpenAlex for { <https://semopenalex.org/work/W2616738933> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2616738933 abstract "Rotating machines play an important role in several applications such as transportation, industry and military. Maintaining continuous operations of these machines is vital to these applications. The reliability of these rotating machines depends on ball bearing health. Bearing can fail from many factors, e.g., impurity of lubricant, improper installation, etc. All of these defects can be detected by vibration analysis. Therefore, vibration signals are utilized to develop early fault detection of ball bearing to warn operators of any anomalies in the system. This paper presents a fault detection algorithm using a logistic regression method to assess the health state of the system. This regression utilizes the node energy of wavelet packet decomposition, kurtosis and crest factor as key features. The resulting signals are processed using the Savitzky-Golay smoothing algorithm before determining the time location where the defects occur with a confidence interval of 99%. The proposed method was tested with actual vibration data of bearing which were provided by the FEMTO-ST institute and showed that it is capable of accurately predicting defect time only 10 seconds after the actual defect occurred. The worst-case prediction of 970 seconds after defect occurs also observed during experiment. Although the system did not set off alarm for fault detection after 970 seconds, one can observe an increase in the fault probability trends in early state. Therefore, the proposed algorithm can be utilized for early fault detection in ball bearing applications." @default.
- W2616738933 created "2017-05-26" @default.
- W2616738933 creator A5061775200 @default.
- W2616738933 creator A5088784929 @default.
- W2616738933 date "2017-03-25" @default.
- W2616738933 modified "2023-09-26" @default.
- W2616738933 title "Early Fault Detection based on Ball Bearing Vibration Analysis using Multinomial Logistic Regression" @default.
- W2616738933 cites W2015940268 @default.
- W2616738933 cites W2527169965 @default.
- W2616738933 doi "https://doi.org/10.1145/3059336.3059367" @default.
- W2616738933 hasPublicationYear "2017" @default.
- W2616738933 type Work @default.
- W2616738933 sameAs 2616738933 @default.
- W2616738933 citedByCount "0" @default.
- W2616738933 crossrefType "proceedings-article" @default.
- W2616738933 hasAuthorship W2616738933A5061775200 @default.
- W2616738933 hasAuthorship W2616738933A5088784929 @default.
- W2616738933 hasConcept C105795698 @default.
- W2616738933 hasConcept C117568660 @default.
- W2616738933 hasConcept C119857082 @default.
- W2616738933 hasConcept C121332964 @default.
- W2616738933 hasConcept C122041747 @default.
- W2616738933 hasConcept C134306372 @default.
- W2616738933 hasConcept C151956035 @default.
- W2616738933 hasConcept C152745839 @default.
- W2616738933 hasConcept C153180895 @default.
- W2616738933 hasConcept C154945302 @default.
- W2616738933 hasConcept C172707124 @default.
- W2616738933 hasConcept C192065140 @default.
- W2616738933 hasConcept C198394728 @default.
- W2616738933 hasConcept C199978012 @default.
- W2616738933 hasConcept C24890656 @default.
- W2616738933 hasConcept C33923547 @default.
- W2616738933 hasConcept C41008148 @default.
- W2616738933 hasConceptScore W2616738933C105795698 @default.
- W2616738933 hasConceptScore W2616738933C117568660 @default.
- W2616738933 hasConceptScore W2616738933C119857082 @default.
- W2616738933 hasConceptScore W2616738933C121332964 @default.
- W2616738933 hasConceptScore W2616738933C122041747 @default.
- W2616738933 hasConceptScore W2616738933C134306372 @default.
- W2616738933 hasConceptScore W2616738933C151956035 @default.
- W2616738933 hasConceptScore W2616738933C152745839 @default.
- W2616738933 hasConceptScore W2616738933C153180895 @default.
- W2616738933 hasConceptScore W2616738933C154945302 @default.
- W2616738933 hasConceptScore W2616738933C172707124 @default.
- W2616738933 hasConceptScore W2616738933C192065140 @default.
- W2616738933 hasConceptScore W2616738933C198394728 @default.
- W2616738933 hasConceptScore W2616738933C199978012 @default.
- W2616738933 hasConceptScore W2616738933C24890656 @default.
- W2616738933 hasConceptScore W2616738933C33923547 @default.
- W2616738933 hasConceptScore W2616738933C41008148 @default.
- W2616738933 hasLocation W26167389331 @default.
- W2616738933 hasOpenAccess W2616738933 @default.
- W2616738933 hasPrimaryLocation W26167389331 @default.
- W2616738933 hasRelatedWork W129344463 @default.
- W2616738933 hasRelatedWork W1860859876 @default.
- W2616738933 hasRelatedWork W1996308133 @default.
- W2616738933 hasRelatedWork W2118670046 @default.
- W2616738933 hasRelatedWork W2159230091 @default.
- W2616738933 hasRelatedWork W2735947499 @default.
- W2616738933 hasRelatedWork W3012592964 @default.
- W2616738933 hasRelatedWork W4244175200 @default.
- W2616738933 hasRelatedWork W766138655 @default.
- W2616738933 hasRelatedWork W2181824244 @default.
- W2616738933 isParatext "false" @default.
- W2616738933 isRetracted "false" @default.
- W2616738933 magId "2616738933" @default.
- W2616738933 workType "article" @default.