Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617083732> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2617083732 endingPage "1175" @default.
- W2617083732 startingPage "1171" @default.
- W2617083732 abstract "An efficient strategy of image processing algorithms to deal with the speckle noise is to incorporate data knowledge and models into them. In this letter, we introduce a hierarchical level set algorithm, which is fast and precise for multiregion segmentation of synthetic aperture radar (SAR) images. Our algorithm performs curve regularization with a nonparametric median filter instead of using the curvature formulation, and hence it reduces the computation time. The proposed algorithm also replaces the front propagation derivatives by morphological operations, and finally, the arithmetic-geometric distance measures the contrast between regions and controls the hierarchical segmentation. We conducted experiments on synthetic and real SAR images modeled by the $mathcal {G}_{I}^{0}$ distribution. The performance evaluation of the proposed algorithm and two related methods comprises the computation time and measures based on segmentation accuracy and stochastic distance. Overall, our segmentation algorithm performed faster and more precise on both synthetic and real SAR images." @default.
- W2617083732 created "2017-06-05" @default.
- W2617083732 creator A5018707025 @default.
- W2617083732 creator A5059008361 @default.
- W2617083732 creator A5059954074 @default.
- W2617083732 creator A5062033609 @default.
- W2617083732 date "2017-07-01" @default.
- W2617083732 modified "2023-10-18" @default.
- W2617083732 title "A Median Regularized Level Set for Hierarchical Segmentation of SAR Images" @default.
- W2617083732 cites W1527879908 @default.
- W2617083732 cites W1964302519 @default.
- W2617083732 cites W1979968728 @default.
- W2617083732 cites W1989135034 @default.
- W2617083732 cites W2014076908 @default.
- W2617083732 cites W2048611331 @default.
- W2617083732 cites W2069468722 @default.
- W2617083732 cites W2076063977 @default.
- W2617083732 cites W2088293348 @default.
- W2617083732 cites W2091699765 @default.
- W2617083732 cites W2095379941 @default.
- W2617083732 cites W2098360446 @default.
- W2617083732 cites W2101178628 @default.
- W2617083732 cites W2114487471 @default.
- W2617083732 cites W2119666089 @default.
- W2617083732 cites W2137993841 @default.
- W2617083732 cites W2139329176 @default.
- W2617083732 cites W2140843581 @default.
- W2617083732 cites W2146448565 @default.
- W2617083732 cites W2157985480 @default.
- W2617083732 cites W2158347164 @default.
- W2617083732 cites W2159152281 @default.
- W2617083732 cites W2165370250 @default.
- W2617083732 cites W2170343378 @default.
- W2617083732 cites W2291541413 @default.
- W2617083732 cites W3101173545 @default.
- W2617083732 doi "https://doi.org/10.1109/lgrs.2017.2702062" @default.
- W2617083732 hasPublicationYear "2017" @default.
- W2617083732 type Work @default.
- W2617083732 sameAs 2617083732 @default.
- W2617083732 citedByCount "44" @default.
- W2617083732 countsByYear W26170837322017 @default.
- W2617083732 countsByYear W26170837322018 @default.
- W2617083732 countsByYear W26170837322019 @default.
- W2617083732 countsByYear W26170837322020 @default.
- W2617083732 countsByYear W26170837322021 @default.
- W2617083732 countsByYear W26170837322022 @default.
- W2617083732 countsByYear W26170837322023 @default.
- W2617083732 crossrefType "journal-article" @default.
- W2617083732 hasAuthorship W2617083732A5018707025 @default.
- W2617083732 hasAuthorship W2617083732A5059008361 @default.
- W2617083732 hasAuthorship W2617083732A5059954074 @default.
- W2617083732 hasAuthorship W2617083732A5062033609 @default.
- W2617083732 hasConcept C124504099 @default.
- W2617083732 hasConcept C153008295 @default.
- W2617083732 hasConcept C153180895 @default.
- W2617083732 hasConcept C154945302 @default.
- W2617083732 hasConcept C177264268 @default.
- W2617083732 hasConcept C199360897 @default.
- W2617083732 hasConcept C31972630 @default.
- W2617083732 hasConcept C41008148 @default.
- W2617083732 hasConcept C87360688 @default.
- W2617083732 hasConcept C89600930 @default.
- W2617083732 hasConceptScore W2617083732C124504099 @default.
- W2617083732 hasConceptScore W2617083732C153008295 @default.
- W2617083732 hasConceptScore W2617083732C153180895 @default.
- W2617083732 hasConceptScore W2617083732C154945302 @default.
- W2617083732 hasConceptScore W2617083732C177264268 @default.
- W2617083732 hasConceptScore W2617083732C199360897 @default.
- W2617083732 hasConceptScore W2617083732C31972630 @default.
- W2617083732 hasConceptScore W2617083732C41008148 @default.
- W2617083732 hasConceptScore W2617083732C87360688 @default.
- W2617083732 hasConceptScore W2617083732C89600930 @default.
- W2617083732 hasFunder F4320322025 @default.
- W2617083732 hasFunder F4320323202 @default.
- W2617083732 hasIssue "7" @default.
- W2617083732 hasLocation W26170837321 @default.
- W2617083732 hasOpenAccess W2617083732 @default.
- W2617083732 hasPrimaryLocation W26170837321 @default.
- W2617083732 hasRelatedWork W1669643531 @default.
- W2617083732 hasRelatedWork W1700740617 @default.
- W2617083732 hasRelatedWork W1721780360 @default.
- W2617083732 hasRelatedWork W2110230079 @default.
- W2617083732 hasRelatedWork W2117664411 @default.
- W2617083732 hasRelatedWork W2117933325 @default.
- W2617083732 hasRelatedWork W2122581818 @default.
- W2617083732 hasRelatedWork W2159066190 @default.
- W2617083732 hasRelatedWork W2739874619 @default.
- W2617083732 hasRelatedWork W1967061043 @default.
- W2617083732 hasVolume "14" @default.
- W2617083732 isParatext "false" @default.
- W2617083732 isRetracted "false" @default.
- W2617083732 magId "2617083732" @default.
- W2617083732 workType "article" @default.