Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617103498> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2617103498 abstract "System GLP is a system of modal logic introduced by Giorgi Japaridze in 1986. This system contains countably many modal operators ([n]), one for each (n in omega). Given a sufficiently strong theory of arithmetic A, system GLP provides a sound and complete description of a fragment of A. Most systems of modal logic can be given a certain type of semantics known as relational semantics (also known as Kripke semantics, or possible world semantics). In a certain sense, such semantics cannot be given to GLP in a satisfactory way. There are other types of semantics. In 2011, Lev Beklemishev and David Gabelaia proved that GLP is complete with respect to a certain class of polytopological spaces. The main goal of this thesis is to present the proof of topological completeness. In the first chapter, we work with relational semantics. This is mainly to showcase the issues that arise when trying to give GLP a (typical) relational interpretation. In the second chapter, we introduce topological constructions needed to prove the completeness theorem. These include lme-spaces, a certain well-behaved class of polytopological spaces. In the third chapter, we present the proof of completeness. This is done by exploiting relational semantics of another system of modal logic, known as system J. Theorems of GLP are, in a certain sense, reducible to theorems of J. It can be shown that for any J-sound relational frame there exists a lme-space and a validity-preserving morphism between them. By exploiting these facts, we can build a topological model that falsifies any formula that is not provable in GLP." @default.
- W2617103498 created "2017-06-05" @default.
- W2617103498 creator A5088390380 @default.
- W2617103498 date "2016-09-26" @default.
- W2617103498 modified "2023-09-28" @default.
- W2617103498 title "Topološka potpunost logika dokazivosti" @default.
- W2617103498 hasPublicationYear "2016" @default.
- W2617103498 type Work @default.
- W2617103498 sameAs 2617103498 @default.
- W2617103498 citedByCount "0" @default.
- W2617103498 crossrefType "dissertation" @default.
- W2617103498 hasAuthorship W2617103498A5088390380 @default.
- W2617103498 hasConcept C102993220 @default.
- W2617103498 hasConcept C118615104 @default.
- W2617103498 hasConcept C134306372 @default.
- W2617103498 hasConcept C136119220 @default.
- W2617103498 hasConcept C137212723 @default.
- W2617103498 hasConcept C154945302 @default.
- W2617103498 hasConcept C156325763 @default.
- W2617103498 hasConcept C160131679 @default.
- W2617103498 hasConcept C17231256 @default.
- W2617103498 hasConcept C184337299 @default.
- W2617103498 hasConcept C185592680 @default.
- W2617103498 hasConcept C188027245 @default.
- W2617103498 hasConcept C199360897 @default.
- W2617103498 hasConcept C200116569 @default.
- W2617103498 hasConcept C202444582 @default.
- W2617103498 hasConcept C203659156 @default.
- W2617103498 hasConcept C207648694 @default.
- W2617103498 hasConcept C27508121 @default.
- W2617103498 hasConcept C2777212361 @default.
- W2617103498 hasConcept C33923547 @default.
- W2617103498 hasConcept C41008148 @default.
- W2617103498 hasConcept C527412718 @default.
- W2617103498 hasConcept C71139939 @default.
- W2617103498 hasConcept C80444323 @default.
- W2617103498 hasConcept C9672783 @default.
- W2617103498 hasConceptScore W2617103498C102993220 @default.
- W2617103498 hasConceptScore W2617103498C118615104 @default.
- W2617103498 hasConceptScore W2617103498C134306372 @default.
- W2617103498 hasConceptScore W2617103498C136119220 @default.
- W2617103498 hasConceptScore W2617103498C137212723 @default.
- W2617103498 hasConceptScore W2617103498C154945302 @default.
- W2617103498 hasConceptScore W2617103498C156325763 @default.
- W2617103498 hasConceptScore W2617103498C160131679 @default.
- W2617103498 hasConceptScore W2617103498C17231256 @default.
- W2617103498 hasConceptScore W2617103498C184337299 @default.
- W2617103498 hasConceptScore W2617103498C185592680 @default.
- W2617103498 hasConceptScore W2617103498C188027245 @default.
- W2617103498 hasConceptScore W2617103498C199360897 @default.
- W2617103498 hasConceptScore W2617103498C200116569 @default.
- W2617103498 hasConceptScore W2617103498C202444582 @default.
- W2617103498 hasConceptScore W2617103498C203659156 @default.
- W2617103498 hasConceptScore W2617103498C207648694 @default.
- W2617103498 hasConceptScore W2617103498C27508121 @default.
- W2617103498 hasConceptScore W2617103498C2777212361 @default.
- W2617103498 hasConceptScore W2617103498C33923547 @default.
- W2617103498 hasConceptScore W2617103498C41008148 @default.
- W2617103498 hasConceptScore W2617103498C527412718 @default.
- W2617103498 hasConceptScore W2617103498C71139939 @default.
- W2617103498 hasConceptScore W2617103498C80444323 @default.
- W2617103498 hasConceptScore W2617103498C9672783 @default.
- W2617103498 hasLocation W26171034981 @default.
- W2617103498 hasOpenAccess W2617103498 @default.
- W2617103498 hasPrimaryLocation W26171034981 @default.
- W2617103498 isParatext "false" @default.
- W2617103498 isRetracted "false" @default.
- W2617103498 magId "2617103498" @default.
- W2617103498 workType "dissertation" @default.