Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617148633> ?p ?o ?g. }
- W2617148633 endingPage "506" @default.
- W2617148633 startingPage "506" @default.
- W2617148633 abstract "The fusion of spatial and spectral information in hyperspectral images (HSIs) is useful for improving the classification accuracy. However, this approach usually results in features of higher dimension and the curse of the dimensionality problem may arise resulting from the small ratio between the number of training samples and the dimensionality of features. To ease this problem, we propose a novel algorithm for spatial-spectral feature extraction based on hypergraph embedding. Firstly, each HSI pixel is regarded as a vertex and the joint of extended morphological profiles (EMP) and spectral features is adopted as the feature associated with the vertex. A hypergraph is then constructed by the K-Nearest-Neighbor method, in which each pixel and its most K relevant pixels are linked as one hyperedge to represent the complex relationships between HSI pixels. Secondly, the hypergraph embedding model is designed to learn a low dimensional feature with the reservation of geometric structure of HSI. An adaptive hyperedge weight estimation scheme is also introduced to preserve the prominent hyperedges by the regularization constraint on the weight. Finally, the learned low-dimensional features are fed to the support vector machine (SVM) for classification. The experimental results on three benchmark hyperspectral databases are presented. They highlight the importance of spatial–spectral joint features embedding for the accurate classification of HSI data. The weight estimation is better for further improving the classification accuracy. These experimental results verify the proposed method." @default.
- W2617148633 created "2017-06-05" @default.
- W2617148633 creator A5019542310 @default.
- W2617148633 creator A5024841956 @default.
- W2617148633 creator A5047679253 @default.
- W2617148633 creator A5054433231 @default.
- W2617148633 creator A5086507196 @default.
- W2617148633 date "2017-05-22" @default.
- W2617148633 modified "2023-10-09" @default.
- W2617148633 title "Hypergraph Embedding for Spatial-Spectral Joint Feature Extraction in Hyperspectral Images" @default.
- W2617148633 cites W1799946925 @default.
- W2617148633 cites W1976359033 @default.
- W2617148633 cites W1992961908 @default.
- W2617148633 cites W1998030734 @default.
- W2617148633 cites W2000738214 @default.
- W2617148633 cites W2001298023 @default.
- W2617148633 cites W2014854862 @default.
- W2617148633 cites W2029316659 @default.
- W2617148633 cites W2043665634 @default.
- W2617148633 cites W2052160904 @default.
- W2617148633 cites W2053186076 @default.
- W2617148633 cites W2056385906 @default.
- W2617148633 cites W2064886835 @default.
- W2617148633 cites W2082732714 @default.
- W2617148633 cites W2093126287 @default.
- W2617148633 cites W2103094532 @default.
- W2617148633 cites W2107966405 @default.
- W2617148633 cites W2114819256 @default.
- W2617148633 cites W2115451191 @default.
- W2617148633 cites W2118796925 @default.
- W2617148633 cites W2124571274 @default.
- W2617148633 cites W2159070926 @default.
- W2617148633 cites W2161672030 @default.
- W2617148633 cites W2167594433 @default.
- W2617148633 cites W2249336288 @default.
- W2617148633 cites W2288723698 @default.
- W2617148633 cites W2316226477 @default.
- W2617148633 cites W2338459354 @default.
- W2617148633 cites W2466704481 @default.
- W2617148633 cites W2578341372 @default.
- W2617148633 cites W2588702902 @default.
- W2617148633 cites W3102646488 @default.
- W2617148633 cites W3122665668 @default.
- W2617148633 cites W3148981562 @default.
- W2617148633 doi "https://doi.org/10.3390/rs9050506" @default.
- W2617148633 hasPublicationYear "2017" @default.
- W2617148633 type Work @default.
- W2617148633 sameAs 2617148633 @default.
- W2617148633 citedByCount "29" @default.
- W2617148633 countsByYear W26171486332017 @default.
- W2617148633 countsByYear W26171486332018 @default.
- W2617148633 countsByYear W26171486332019 @default.
- W2617148633 countsByYear W26171486332020 @default.
- W2617148633 countsByYear W26171486332021 @default.
- W2617148633 countsByYear W26171486332022 @default.
- W2617148633 crossrefType "journal-article" @default.
- W2617148633 hasAuthorship W2617148633A5019542310 @default.
- W2617148633 hasAuthorship W2617148633A5024841956 @default.
- W2617148633 hasAuthorship W2617148633A5047679253 @default.
- W2617148633 hasAuthorship W2617148633A5054433231 @default.
- W2617148633 hasAuthorship W2617148633A5086507196 @default.
- W2617148633 hasBestOaLocation W26171486331 @default.
- W2617148633 hasConcept C111030470 @default.
- W2617148633 hasConcept C118615104 @default.
- W2617148633 hasConcept C153180895 @default.
- W2617148633 hasConcept C154945302 @default.
- W2617148633 hasConcept C159078339 @default.
- W2617148633 hasConcept C160633673 @default.
- W2617148633 hasConcept C2781221856 @default.
- W2617148633 hasConcept C33923547 @default.
- W2617148633 hasConcept C41008148 @default.
- W2617148633 hasConcept C41608201 @default.
- W2617148633 hasConcept C52622490 @default.
- W2617148633 hasConceptScore W2617148633C111030470 @default.
- W2617148633 hasConceptScore W2617148633C118615104 @default.
- W2617148633 hasConceptScore W2617148633C153180895 @default.
- W2617148633 hasConceptScore W2617148633C154945302 @default.
- W2617148633 hasConceptScore W2617148633C159078339 @default.
- W2617148633 hasConceptScore W2617148633C160633673 @default.
- W2617148633 hasConceptScore W2617148633C2781221856 @default.
- W2617148633 hasConceptScore W2617148633C33923547 @default.
- W2617148633 hasConceptScore W2617148633C41008148 @default.
- W2617148633 hasConceptScore W2617148633C41608201 @default.
- W2617148633 hasConceptScore W2617148633C52622490 @default.
- W2617148633 hasIssue "5" @default.
- W2617148633 hasLocation W26171486331 @default.
- W2617148633 hasOpenAccess W2617148633 @default.
- W2617148633 hasPrimaryLocation W26171486331 @default.
- W2617148633 hasRelatedWork W1993337810 @default.
- W2617148633 hasRelatedWork W2006670433 @default.
- W2617148633 hasRelatedWork W2028628118 @default.
- W2617148633 hasRelatedWork W2136485282 @default.
- W2617148633 hasRelatedWork W2546645752 @default.
- W2617148633 hasRelatedWork W2546871836 @default.
- W2617148633 hasRelatedWork W3034655717 @default.
- W2617148633 hasRelatedWork W3173596272 @default.
- W2617148633 hasRelatedWork W4313379344 @default.
- W2617148633 hasRelatedWork W4366492987 @default.