Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617207196> ?p ?o ?g. }
- W2617207196 endingPage "42" @default.
- W2617207196 startingPage "1" @default.
- W2617207196 abstract "Locally correctable codes (LCCs) and locally testable codes (LTCs) are error-correcting codes that admit local algorithms for correction and detection of errors. Those algorithms are local in the sense that they only query a small number of entries of the corrupted codeword. The fundamental question about LCCs and LTCs is to determine the optimal tradeoff among their rate, distance, and query complexity. In this work, we construct the first LCCs and LTCs with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n , constant rate (which can even be taken arbitrarily close to 1), and constant relative distance, whose query complexity is exp(Õ(√log n )) (for LCCs) and (log n ) O (log log n ) (for LTCs). In addition to having small query complexity, our codes also achieve better tradeoffs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. Over the binary alphabet, our codes meet the Zyablov bound. Such tradeoffs between the rate and the relative distance were previously not known for any o ( n ) query complexity. Our results on LCCs also immediately give locally decodable codes with the same parameters." @default.
- W2617207196 created "2017-06-05" @default.
- W2617207196 creator A5020540233 @default.
- W2617207196 creator A5031695135 @default.
- W2617207196 creator A5053736571 @default.
- W2617207196 creator A5071686980 @default.
- W2617207196 date "2017-04-30" @default.
- W2617207196 modified "2023-09-24" @default.
- W2617207196 title "High-Rate Locally Correctable and Locally Testable Codes with Sub-Polynomial Query Complexity" @default.
- W2617207196 cites W1481582196 @default.
- W2617207196 cites W1527094333 @default.
- W2617207196 cites W1901622511 @default.
- W2617207196 cites W1966671033 @default.
- W2617207196 cites W1967703498 @default.
- W2617207196 cites W1973966084 @default.
- W2617207196 cites W1993111701 @default.
- W2617207196 cites W1996839061 @default.
- W2617207196 cites W1998400388 @default.
- W2617207196 cites W1998698985 @default.
- W2617207196 cites W2014944833 @default.
- W2617207196 cites W2018047324 @default.
- W2617207196 cites W2018925011 @default.
- W2617207196 cites W2019578639 @default.
- W2617207196 cites W2022381972 @default.
- W2617207196 cites W2024011363 @default.
- W2617207196 cites W2024581747 @default.
- W2617207196 cites W2027317757 @default.
- W2617207196 cites W2030221686 @default.
- W2617207196 cites W2038098381 @default.
- W2617207196 cites W2038691311 @default.
- W2617207196 cites W2045377861 @default.
- W2617207196 cites W2048651540 @default.
- W2617207196 cites W2048958388 @default.
- W2617207196 cites W2049516232 @default.
- W2617207196 cites W2050687505 @default.
- W2617207196 cites W2053086236 @default.
- W2617207196 cites W2056759312 @default.
- W2617207196 cites W2057157452 @default.
- W2617207196 cites W2062075025 @default.
- W2617207196 cites W2068096733 @default.
- W2617207196 cites W2072264369 @default.
- W2617207196 cites W2073346043 @default.
- W2617207196 cites W2087900794 @default.
- W2617207196 cites W2104536936 @default.
- W2617207196 cites W2122270497 @default.
- W2617207196 cites W2125293366 @default.
- W2617207196 cites W2129335043 @default.
- W2617207196 cites W2138036903 @default.
- W2617207196 cites W2138684901 @default.
- W2617207196 cites W2138779125 @default.
- W2617207196 cites W2143299189 @default.
- W2617207196 cites W2146078064 @default.
- W2617207196 cites W2148352980 @default.
- W2617207196 cites W2148575324 @default.
- W2617207196 cites W228023874 @default.
- W2617207196 cites W2342204193 @default.
- W2617207196 cites W2611428058 @default.
- W2617207196 cites W2795962163 @default.
- W2617207196 cites W2963787959 @default.
- W2617207196 cites W2998808137 @default.
- W2617207196 cites W3004537778 @default.
- W2617207196 cites W3103511209 @default.
- W2617207196 cites W3109276270 @default.
- W2617207196 cites W3139428869 @default.
- W2617207196 cites W1835740177 @default.
- W2617207196 doi "https://doi.org/10.1145/3051093" @default.
- W2617207196 hasPublicationYear "2017" @default.
- W2617207196 type Work @default.
- W2617207196 sameAs 2617207196 @default.
- W2617207196 citedByCount "39" @default.
- W2617207196 countsByYear W26172071962016 @default.
- W2617207196 countsByYear W26172071962017 @default.
- W2617207196 countsByYear W26172071962018 @default.
- W2617207196 countsByYear W26172071962019 @default.
- W2617207196 countsByYear W26172071962020 @default.
- W2617207196 countsByYear W26172071962021 @default.
- W2617207196 countsByYear W26172071962022 @default.
- W2617207196 countsByYear W26172071962023 @default.
- W2617207196 crossrefType "journal-article" @default.
- W2617207196 hasAuthorship W2617207196A5020540233 @default.
- W2617207196 hasAuthorship W2617207196A5031695135 @default.
- W2617207196 hasAuthorship W2617207196A5053736571 @default.
- W2617207196 hasAuthorship W2617207196A5071686980 @default.
- W2617207196 hasBestOaLocation W26172071962 @default.
- W2617207196 hasConcept C112876837 @default.
- W2617207196 hasConcept C11413529 @default.
- W2617207196 hasConcept C114614502 @default.
- W2617207196 hasConcept C118615104 @default.
- W2617207196 hasConcept C134306372 @default.
- W2617207196 hasConcept C138885662 @default.
- W2617207196 hasConcept C153207627 @default.
- W2617207196 hasConcept C157125643 @default.
- W2617207196 hasConcept C179145077 @default.
- W2617207196 hasConcept C179799912 @default.
- W2617207196 hasConcept C199360897 @default.
- W2617207196 hasConcept C2777027219 @default.
- W2617207196 hasConcept C33923547 @default.
- W2617207196 hasConcept C41008148 @default.