Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617208081> ?p ?o ?g. }
- W2617208081 abstract "Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013)] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge." @default.
- W2617208081 created "2017-06-05" @default.
- W2617208081 creator A5007224077 @default.
- W2617208081 creator A5028552959 @default.
- W2617208081 creator A5048750767 @default.
- W2617208081 date "2017-05-26" @default.
- W2617208081 modified "2023-10-11" @default.
- W2617208081 title "Convergence behavior of the random phase approximation renormalized correlation energy" @default.
- W2617208081 cites W121524231 @default.
- W2617208081 cites W1534366739 @default.
- W2617208081 cites W1563609065 @default.
- W2617208081 cites W1596146594 @default.
- W2617208081 cites W1862221011 @default.
- W2617208081 cites W1965931261 @default.
- W2617208081 cites W1966757299 @default.
- W2617208081 cites W1969126341 @default.
- W2617208081 cites W1970127494 @default.
- W2617208081 cites W1976741239 @default.
- W2617208081 cites W1979603651 @default.
- W2617208081 cites W1981107243 @default.
- W2617208081 cites W1981368803 @default.
- W2617208081 cites W1981491642 @default.
- W2617208081 cites W1983972427 @default.
- W2617208081 cites W1984111569 @default.
- W2617208081 cites W1984884604 @default.
- W2617208081 cites W1988099119 @default.
- W2617208081 cites W1990849018 @default.
- W2617208081 cites W1991591703 @default.
- W2617208081 cites W1992985800 @default.
- W2617208081 cites W1999994318 @default.
- W2617208081 cites W2000935529 @default.
- W2617208081 cites W2004036108 @default.
- W2617208081 cites W2005358078 @default.
- W2617208081 cites W2011301426 @default.
- W2617208081 cites W2011327487 @default.
- W2617208081 cites W2020056288 @default.
- W2617208081 cites W2024405939 @default.
- W2617208081 cites W2025558369 @default.
- W2617208081 cites W2029509567 @default.
- W2617208081 cites W2030976617 @default.
- W2617208081 cites W2032509385 @default.
- W2617208081 cites W2032719166 @default.
- W2617208081 cites W2033807019 @default.
- W2617208081 cites W2036025330 @default.
- W2617208081 cites W2036113194 @default.
- W2617208081 cites W2036330668 @default.
- W2617208081 cites W2036596420 @default.
- W2617208081 cites W2037657947 @default.
- W2617208081 cites W2038261361 @default.
- W2617208081 cites W2038720761 @default.
- W2617208081 cites W2040560938 @default.
- W2617208081 cites W2047027258 @default.
- W2617208081 cites W2048376987 @default.
- W2617208081 cites W2051559391 @default.
- W2617208081 cites W2052554360 @default.
- W2617208081 cites W2052766668 @default.
- W2617208081 cites W2055014004 @default.
- W2617208081 cites W2058225864 @default.
- W2617208081 cites W2058705304 @default.
- W2617208081 cites W2059960578 @default.
- W2617208081 cites W2060994054 @default.
- W2617208081 cites W2066966625 @default.
- W2617208081 cites W2067804932 @default.
- W2617208081 cites W2070235865 @default.
- W2617208081 cites W2070623500 @default.
- W2617208081 cites W2071528342 @default.
- W2617208081 cites W2071844305 @default.
- W2617208081 cites W2072996664 @default.
- W2617208081 cites W2074711106 @default.
- W2617208081 cites W2076216515 @default.
- W2617208081 cites W2079745003 @default.
- W2617208081 cites W2084453778 @default.
- W2617208081 cites W2087582664 @default.
- W2617208081 cites W2093991756 @default.
- W2617208081 cites W2099020972 @default.
- W2617208081 cites W2101369288 @default.
- W2617208081 cites W2118875032 @default.
- W2617208081 cites W2134459894 @default.
- W2617208081 cites W2151796659 @default.
- W2617208081 cites W2160622452 @default.
- W2617208081 cites W2168415812 @default.
- W2617208081 cites W2230728100 @default.
- W2617208081 cites W2316127840 @default.
- W2617208081 cites W2318948631 @default.
- W2617208081 cites W2320048325 @default.
- W2617208081 cites W2332717410 @default.
- W2617208081 cites W2487042979 @default.
- W2617208081 cites W2494633904 @default.
- W2617208081 cites W2533254460 @default.
- W2617208081 cites W2547867457 @default.
- W2617208081 cites W2560233171 @default.
- W2617208081 cites W2963009629 @default.
- W2617208081 cites W3099389005 @default.
- W2617208081 cites W3105165723 @default.
- W2617208081 cites W4213042896 @default.
- W2617208081 doi "https://doi.org/10.1103/physrevb.95.195158" @default.
- W2617208081 hasPublicationYear "2017" @default.
- W2617208081 type Work @default.
- W2617208081 sameAs 2617208081 @default.
- W2617208081 citedByCount "12" @default.