Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617536493> ?p ?o ?g. }
- W2617536493 endingPage "4440" @default.
- W2617536493 startingPage "4427" @default.
- W2617536493 abstract "To achieve high scene classification performance of high spatial resolution remote sensing images (HSR-RSIs), it is important to learn a discriminative space in which the distance metric can precisely measure both similarity and dissimilarity of features and labels between images. While the traditional metric learning methods focus on preserving interclass separability, label consistency (LC) is less involved, and this might degrade scene images classification accuracy. Aiming at considering intraclass compactness in HSR-RSIs, we propose a discriminative distance metric learning method with LC (DDML-LC). The DDML-LC starts from the dense scale invariant feature transformation features extracted from HSR-RSIs, and then uses spatial pyramid maximum pooling with sparse coding to encode the features. In the learning process, the intraclass compactness and interclass separability are enforced while the global and local LC after the feature transformation is constrained, leading to a joint optimization of feature manifold, distance metric, and label distribution. The learned metric space can scale to discriminate out-of-sample HSR-RSIs that do not appear in the metric learning process. Experimental results on three data sets demonstrate the superior performance of the DDML-LC over state-of-the-art techniques in HSR-RSI classification." @default.
- W2617536493 created "2017-06-05" @default.
- W2617536493 creator A5005349829 @default.
- W2617536493 creator A5015739024 @default.
- W2617536493 creator A5027835055 @default.
- W2617536493 creator A5044278476 @default.
- W2617536493 creator A5056894354 @default.
- W2617536493 creator A5060209705 @default.
- W2617536493 creator A5066599847 @default.
- W2617536493 creator A5089171585 @default.
- W2617536493 creator A5090079801 @default.
- W2617536493 date "2017-08-01" @default.
- W2617536493 modified "2023-10-18" @default.
- W2617536493 title "Learning a Discriminative Distance Metric With Label Consistency for Scene Classification" @default.
- W2617536493 cites W1488783102 @default.
- W2617536493 cites W1576767704 @default.
- W2617536493 cites W1584663654 @default.
- W2617536493 cites W1916279783 @default.
- W2617536493 cites W1968865278 @default.
- W2617536493 cites W1978452970 @default.
- W2617536493 cites W1980038761 @default.
- W2617536493 cites W1988719066 @default.
- W2617536493 cites W1989316905 @default.
- W2617536493 cites W2001141328 @default.
- W2617536493 cites W2001298023 @default.
- W2617536493 cites W2003677307 @default.
- W2617536493 cites W2004080111 @default.
- W2617536493 cites W2006603039 @default.
- W2617536493 cites W2015563892 @default.
- W2617536493 cites W2020180389 @default.
- W2617536493 cites W2020836902 @default.
- W2617536493 cites W2020912318 @default.
- W2617536493 cites W2032826816 @default.
- W2617536493 cites W2041972612 @default.
- W2617536493 cites W2049538695 @default.
- W2617536493 cites W2053186076 @default.
- W2617536493 cites W2057463961 @default.
- W2617536493 cites W2058318567 @default.
- W2617536493 cites W2059497048 @default.
- W2617536493 cites W2077022097 @default.
- W2617536493 cites W2077689834 @default.
- W2617536493 cites W2086866337 @default.
- W2617536493 cites W2091280333 @default.
- W2617536493 cites W2093679105 @default.
- W2617536493 cites W2113464037 @default.
- W2617536493 cites W2113590298 @default.
- W2617536493 cites W2135758523 @default.
- W2617536493 cites W2150593711 @default.
- W2617536493 cites W2151103935 @default.
- W2617536493 cites W2152756885 @default.
- W2617536493 cites W2153409933 @default.
- W2617536493 cites W2156838815 @default.
- W2617536493 cites W2161969291 @default.
- W2617536493 cites W2162915993 @default.
- W2617536493 cites W2163584563 @default.
- W2617536493 cites W2166742463 @default.
- W2617536493 cites W2295987691 @default.
- W2617536493 cites W2470786530 @default.
- W2617536493 cites W2594610669 @default.
- W2617536493 doi "https://doi.org/10.1109/tgrs.2017.2692280" @default.
- W2617536493 hasPublicationYear "2017" @default.
- W2617536493 type Work @default.
- W2617536493 sameAs 2617536493 @default.
- W2617536493 citedByCount "27" @default.
- W2617536493 countsByYear W26175364932018 @default.
- W2617536493 countsByYear W26175364932019 @default.
- W2617536493 countsByYear W26175364932020 @default.
- W2617536493 countsByYear W26175364932021 @default.
- W2617536493 countsByYear W26175364932022 @default.
- W2617536493 countsByYear W26175364932023 @default.
- W2617536493 crossrefType "journal-article" @default.
- W2617536493 hasAuthorship W2617536493A5005349829 @default.
- W2617536493 hasAuthorship W2617536493A5015739024 @default.
- W2617536493 hasAuthorship W2617536493A5027835055 @default.
- W2617536493 hasAuthorship W2617536493A5044278476 @default.
- W2617536493 hasAuthorship W2617536493A5056894354 @default.
- W2617536493 hasAuthorship W2617536493A5060209705 @default.
- W2617536493 hasAuthorship W2617536493A5066599847 @default.
- W2617536493 hasAuthorship W2617536493A5089171585 @default.
- W2617536493 hasAuthorship W2617536493A5090079801 @default.
- W2617536493 hasConcept C153180895 @default.
- W2617536493 hasConcept C154945302 @default.
- W2617536493 hasConcept C162324750 @default.
- W2617536493 hasConcept C176217482 @default.
- W2617536493 hasConcept C18648836 @default.
- W2617536493 hasConcept C202444582 @default.
- W2617536493 hasConcept C205649164 @default.
- W2617536493 hasConcept C21547014 @default.
- W2617536493 hasConcept C33923547 @default.
- W2617536493 hasConcept C41008148 @default.
- W2617536493 hasConcept C62649853 @default.
- W2617536493 hasConcept C70437156 @default.
- W2617536493 hasConcept C97931131 @default.
- W2617536493 hasConceptScore W2617536493C153180895 @default.
- W2617536493 hasConceptScore W2617536493C154945302 @default.
- W2617536493 hasConceptScore W2617536493C162324750 @default.
- W2617536493 hasConceptScore W2617536493C176217482 @default.
- W2617536493 hasConceptScore W2617536493C18648836 @default.