Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617558345> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2617558345 endingPage "4280" @default.
- W2617558345 startingPage "4280" @default.
- W2617558345 abstract "Abstract Background: Bone marrow (BM) fibrosis is a major cause of morbidity and mortality in patients with myeloproliferative neoplasms. Its progression correlates with thickening and distortion of the bone trabeculae, a phenomenon commonly referred to as osteosclerosis. The physiological process of bone remodeling depends on a delicate interplay between monocyte-derived bone-resorbing osteoclasts and mesenchymal cell-derived bone-forming osteoblasts. Whereas impairment in bone resorption is believed to be the underlying cause of inherited sclerosing bone dysplasias, little is known about the pathogenesis of osteosclerosis associated with myelofibrosis (MF). Phenotypically complex bone-remodeling cells are attached to the bone surface and as such are difficult to study by conventional techniques. Here, we present a novel method for visualization and quantification of these cells in situ and assess their role in inducing osteosclerotic changes in the BM of patients with MF. Methods: Formalin-fixed paraffin-embedded BM biopsy specimens were obtained from the iliac crest of patients with advanced stages of MF (MF-2 and MF-3) and healthy controls. Staining of each sample was performed using a series of previously validated monoclonal antibodies directed against osteoclast- (TRAP and cathepsin K) and osteoblast-specific antigens (CD56 and RUNX2). To achieve non-interfering identification, we employed a tyramide-based fluorescent immunohistochemistry approach (PerkinElmer Opal). Specimens were imaged in toto using an automated multispectral system at 0.5 µm resolution and segmented to individual cells via a pattern recognition algorithm. Cells were assigned to one of the two phenotypes based on specific signal intensities and size. Finally, cells lying within 20 µm of the bone perimeter were quantified utilizing methods of spatial statistics. Results: Samples from 10 MF patients (age 63 ± 8 years, median ± MAD) were compared to 3 healthy controls (age 48 ± 7 years). Area of examined tissue ranged from 8.2 to 38.4 mm2 with the median BM to bone ratio of 1.6:1 and 3.5:1, in MF and controls respectively. Discrimination of bone-remodeling subsets by the assay demonstrated high sensitivity and specificity, estimated both visually (Figure 1) and quantitatively. In MF patients we detected 7.1 ± 3.1 osteoclasts per 100 mm of bone perimeter (mean ± SEM) versus 2.4 ± 1.9 per 100 mm in healthy controls (p < 0.0001). Frequency of observable osteoblasts per bone perimeter also showed a significant increase in MF compared to healthy controls (p < 0.0001). Quantification using area of the bone as denominator was in concordance with the densities found per bone perimeter and similar statistical significance was observed. Conclusions: Our analytical method offers a feasible approach for in situ investigation of complex cellular subsets in the BM. This analysis demonstrates that both osteoclasts and osteoblasts are pathologically affected in advanced stages of MF. Expansion of osteoblastic population supports the involvement of cells of mesenchymal lineage in the progression of osteosclerosis. By contrast, an overwhelmingly increased density of osteoclasts suggests a functional loss of these cells of monocytic origin. This is particularly intriguing in view of the emerging role neoplastic monocyte-derived fibrocytes play in the pathogenesis of MF. Further studies exploiting the interaction between these cells will likely shed light on the pathogenesis of osteosclerosis in MF. Figure Visualization of bone-remodeling cells in BM tissue section of a patient with MF. Immunostaining with TRAP and cathepsin K revealsgiant multinucleated osteoclasts (*), while elongated CD56+/RUNX2+ osteoblasts (▾) line along the bone edge. Scale bar: 200 µm. Figure. Visualization of bone-remodeling cells in BM tissue section of a patient with MF. Immunostaining with TRAP and cathepsin K revealsgiant multinucleated osteoclasts (*), while elongated CD56+/RUNX2+ osteoblasts (▾) line along the bone edge. Scale bar: 200 µm. Disclosures No relevant conflicts of interest to declare." @default.
- W2617558345 created "2017-06-05" @default.
- W2617558345 creator A5000366856 @default.
- W2617558345 creator A5008109253 @default.
- W2617558345 creator A5014362126 @default.
- W2617558345 creator A5037747480 @default.
- W2617558345 creator A5042973046 @default.
- W2617558345 creator A5073271257 @default.
- W2617558345 creator A5084290698 @default.
- W2617558345 creator A5085521139 @default.
- W2617558345 date "2016-12-02" @default.
- W2617558345 modified "2023-10-07" @default.
- W2617558345 title "Multiplex Quantitative Imaging Analysis of Bone-Remodeling Cells in Patients with Myelofibrosis" @default.
- W2617558345 doi "https://doi.org/10.1182/blood.v128.22.4280.4280" @default.
- W2617558345 hasPublicationYear "2016" @default.
- W2617558345 type Work @default.
- W2617558345 sameAs 2617558345 @default.
- W2617558345 citedByCount "0" @default.
- W2617558345 crossrefType "journal-article" @default.
- W2617558345 hasAuthorship W2617558345A5000366856 @default.
- W2617558345 hasAuthorship W2617558345A5008109253 @default.
- W2617558345 hasAuthorship W2617558345A5014362126 @default.
- W2617558345 hasAuthorship W2617558345A5037747480 @default.
- W2617558345 hasAuthorship W2617558345A5042973046 @default.
- W2617558345 hasAuthorship W2617558345A5073271257 @default.
- W2617558345 hasAuthorship W2617558345A5084290698 @default.
- W2617558345 hasAuthorship W2617558345A5085521139 @default.
- W2617558345 hasConcept C126322002 @default.
- W2617558345 hasConcept C142724271 @default.
- W2617558345 hasConcept C170033053 @default.
- W2617558345 hasConcept C170493617 @default.
- W2617558345 hasConcept C202751555 @default.
- W2617558345 hasConcept C2776033226 @default.
- W2617558345 hasConcept C2777479973 @default.
- W2617558345 hasConcept C2778260815 @default.
- W2617558345 hasConcept C2780007613 @default.
- W2617558345 hasConcept C2780076729 @default.
- W2617558345 hasConcept C55493867 @default.
- W2617558345 hasConcept C673006 @default.
- W2617558345 hasConcept C71924100 @default.
- W2617558345 hasConcept C86803240 @default.
- W2617558345 hasConceptScore W2617558345C126322002 @default.
- W2617558345 hasConceptScore W2617558345C142724271 @default.
- W2617558345 hasConceptScore W2617558345C170033053 @default.
- W2617558345 hasConceptScore W2617558345C170493617 @default.
- W2617558345 hasConceptScore W2617558345C202751555 @default.
- W2617558345 hasConceptScore W2617558345C2776033226 @default.
- W2617558345 hasConceptScore W2617558345C2777479973 @default.
- W2617558345 hasConceptScore W2617558345C2778260815 @default.
- W2617558345 hasConceptScore W2617558345C2780007613 @default.
- W2617558345 hasConceptScore W2617558345C2780076729 @default.
- W2617558345 hasConceptScore W2617558345C55493867 @default.
- W2617558345 hasConceptScore W2617558345C673006 @default.
- W2617558345 hasConceptScore W2617558345C71924100 @default.
- W2617558345 hasConceptScore W2617558345C86803240 @default.
- W2617558345 hasIssue "22" @default.
- W2617558345 hasLocation W26175583451 @default.
- W2617558345 hasOpenAccess W2617558345 @default.
- W2617558345 hasPrimaryLocation W26175583451 @default.
- W2617558345 hasRelatedWork W168147309 @default.
- W2617558345 hasRelatedWork W2028018890 @default.
- W2617558345 hasRelatedWork W2045006939 @default.
- W2617558345 hasRelatedWork W2108897036 @default.
- W2617558345 hasRelatedWork W2155827729 @default.
- W2617558345 hasRelatedWork W2321505964 @default.
- W2617558345 hasRelatedWork W2427331392 @default.
- W2617558345 hasRelatedWork W2497081978 @default.
- W2617558345 hasRelatedWork W2913791064 @default.
- W2617558345 hasRelatedWork W4200393847 @default.
- W2617558345 hasVolume "128" @default.
- W2617558345 isParatext "false" @default.
- W2617558345 isRetracted "false" @default.
- W2617558345 magId "2617558345" @default.
- W2617558345 workType "article" @default.