Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617597848> ?p ?o ?g. }
- W2617597848 endingPage "80" @default.
- W2617597848 startingPage "65" @default.
- W2617597848 abstract "Nonlinear dynamical analysis techniques have been widely used for EEG analysis. The correlation dimension based upon the correlation is one of the most commonly used measures which quantifies the active degrees of freedom or the complexity of the dynamical system on the attractor. This article aims to provide an overview of the basic concepts of nonlinear dynamical analysis, and also to demonstrate its application in EEG sleep analysis. As one of the evidences, it is shown that there is a decrease in the correlation dimension (i.e., a loss in the complexity of the underlying dynamics of the neuronal networks in the brain) from lighter to deeper sleep stages. The use of the nonlinear dynamical analysis can be viewed in two aspects. In one aspect, the lower correlation dimension of the EEG suggests that the neuronal networks are more strongly coupled at deeper sleep stage. In another aspect, the substantial differences of the correlation dimensions of the EEG associated with various sleep stages can be used for sleep stage discrimination." @default.
- W2617597848 created "2017-06-05" @default.
- W2617597848 creator A5071809743 @default.
- W2617597848 date "2016-04-20" @default.
- W2617597848 modified "2023-09-27" @default.
- W2617597848 title "Nonlinear Dynamical Analysis: Application to EEG Sleep Analysis" @default.
- W2617597848 cites W109729959 @default.
- W2617597848 cites W1549386224 @default.
- W2617597848 cites W1599825994 @default.
- W2617597848 cites W1689369912 @default.
- W2617597848 cites W1963756232 @default.
- W2617597848 cites W1965754674 @default.
- W2617597848 cites W1968183133 @default.
- W2617597848 cites W1985522870 @default.
- W2617597848 cites W1986748072 @default.
- W2617597848 cites W1993578171 @default.
- W2617597848 cites W1996273401 @default.
- W2617597848 cites W1998727969 @default.
- W2617597848 cites W2000938010 @default.
- W2617597848 cites W2005740351 @default.
- W2617597848 cites W2007919714 @default.
- W2617597848 cites W2022044299 @default.
- W2617597848 cites W2022186738 @default.
- W2617597848 cites W2026123057 @default.
- W2617597848 cites W2026652836 @default.
- W2617597848 cites W2027208707 @default.
- W2617597848 cites W2029270633 @default.
- W2617597848 cites W2029401646 @default.
- W2617597848 cites W2031365860 @default.
- W2617597848 cites W2040704490 @default.
- W2617597848 cites W2043415700 @default.
- W2617597848 cites W2044257293 @default.
- W2617597848 cites W2051570650 @default.
- W2617597848 cites W2060823697 @default.
- W2617597848 cites W2070962050 @default.
- W2617597848 cites W2075412305 @default.
- W2617597848 cites W2085009317 @default.
- W2617597848 cites W2095518456 @default.
- W2617597848 cites W2098746383 @default.
- W2617597848 cites W2103868925 @default.
- W2617597848 cites W2109132687 @default.
- W2617597848 cites W2125566231 @default.
- W2617597848 cites W2125623328 @default.
- W2617597848 cites W2144691514 @default.
- W2617597848 cites W2159025673 @default.
- W2617597848 cites W2164284840 @default.
- W2617597848 cites W2501358353 @default.
- W2617597848 cites W2884525847 @default.
- W2617597848 cites W3022302886 @default.
- W2617597848 cites W2184584747 @default.
- W2617597848 hasPublicationYear "2016" @default.
- W2617597848 type Work @default.
- W2617597848 sameAs 2617597848 @default.
- W2617597848 citedByCount "0" @default.
- W2617597848 crossrefType "journal-article" @default.
- W2617597848 hasAuthorship W2617597848A5071809743 @default.
- W2617597848 hasConcept C110601934 @default.
- W2617597848 hasConcept C111919701 @default.
- W2617597848 hasConcept C117220453 @default.
- W2617597848 hasConcept C121332964 @default.
- W2617597848 hasConcept C121864883 @default.
- W2617597848 hasConcept C134306372 @default.
- W2617597848 hasConcept C153180895 @default.
- W2617597848 hasConcept C154945302 @default.
- W2617597848 hasConcept C15744967 @default.
- W2617597848 hasConcept C158622935 @default.
- W2617597848 hasConcept C164380108 @default.
- W2617597848 hasConcept C169760540 @default.
- W2617597848 hasConcept C202444582 @default.
- W2617597848 hasConcept C2524010 @default.
- W2617597848 hasConcept C26546657 @default.
- W2617597848 hasConcept C2775841894 @default.
- W2617597848 hasConcept C2778205975 @default.
- W2617597848 hasConcept C2910364982 @default.
- W2617597848 hasConcept C33676613 @default.
- W2617597848 hasConcept C33923547 @default.
- W2617597848 hasConcept C40636538 @default.
- W2617597848 hasConcept C41008148 @default.
- W2617597848 hasConcept C43456602 @default.
- W2617597848 hasConcept C522805319 @default.
- W2617597848 hasConcept C62520636 @default.
- W2617597848 hasConcept C79379906 @default.
- W2617597848 hasConceptScore W2617597848C110601934 @default.
- W2617597848 hasConceptScore W2617597848C111919701 @default.
- W2617597848 hasConceptScore W2617597848C117220453 @default.
- W2617597848 hasConceptScore W2617597848C121332964 @default.
- W2617597848 hasConceptScore W2617597848C121864883 @default.
- W2617597848 hasConceptScore W2617597848C134306372 @default.
- W2617597848 hasConceptScore W2617597848C153180895 @default.
- W2617597848 hasConceptScore W2617597848C154945302 @default.
- W2617597848 hasConceptScore W2617597848C15744967 @default.
- W2617597848 hasConceptScore W2617597848C158622935 @default.
- W2617597848 hasConceptScore W2617597848C164380108 @default.
- W2617597848 hasConceptScore W2617597848C169760540 @default.
- W2617597848 hasConceptScore W2617597848C202444582 @default.
- W2617597848 hasConceptScore W2617597848C2524010 @default.
- W2617597848 hasConceptScore W2617597848C26546657 @default.
- W2617597848 hasConceptScore W2617597848C2775841894 @default.