Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617755610> ?p ?o ?g. }
- W2617755610 endingPage "84" @default.
- W2617755610 startingPage "72" @default.
- W2617755610 abstract "Remote sensing of water quality in turbid coastal and inland waters requires accurate atmospheric correction, which is technically challenging. While previous efforts have shown the advantage of using the short-wave infrared (SWIR) bands instead of near-infrared (NIR) bands for atmospheric correction, such an approach could only be applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite (MODISA). This is because MODIS data from the Terra satellite (MODIST) contain more noise and other sensor artifacts, thus this sensor has been generally regarded by the ocean color research community as not being able to provide science quality data. Here, we address this technical challenge through noise reduction and regional vicarious calibration adjustment, and demonstrate preliminary success using turbid Taihu Lake as an example. The noise in the three SWIR bands was evaluated first, and then reduced through a noise reduction method. The SWIR bands were adjusted over open-ocean waters using the well-calibrated NIR ocean bands (1-km resolution) and radiative transfer, which were then used to adjust the land bands (250-m and 500-m resolution) in the visible and NIR over turbid waters where concurrent field-measured reflectance spectra are available. Of all three combinations of SWIR bands, the combination of 1240 and 1640-nm bands was found to perform the best, showing significantly improved retrieval accuracy for Taihu Lake, leading to recovery of low-quality MODIST data to higher-quality data comparable to MODISA, and thus doubling valid data coverage. Testing of this approach on another highly turbid lake (Chaohu Lake, China) showed similar results. While the general application of this approach to turbid lakes still needs to be tested as local tuning of the calibration coefficients may be required, these results suggest that MODIST may be used as effectively as MODISA for monitoring Taihu Lake water quality." @default.
- W2617755610 created "2017-06-05" @default.
- W2617755610 creator A5026416332 @default.
- W2617755610 creator A5033613632 @default.
- W2617755610 creator A5047407506 @default.
- W2617755610 creator A5054977790 @default.
- W2617755610 creator A5063074934 @default.
- W2617755610 creator A5066738004 @default.
- W2617755610 creator A5085678150 @default.
- W2617755610 creator A5087801712 @default.
- W2617755610 date "2017-08-01" @default.
- W2617755610 modified "2023-10-13" @default.
- W2617755610 title "Recovering low quality MODIS-Terra data over highly turbid waters through noise reduction and regional vicarious calibration adjustment: A case study in Taihu Lake" @default.
- W2617755610 cites W1520046915 @default.
- W2617755610 cites W161520972 @default.
- W2617755610 cites W1966197059 @default.
- W2617755610 cites W1968355551 @default.
- W2617755610 cites W1968839947 @default.
- W2617755610 cites W1970100864 @default.
- W2617755610 cites W1972514106 @default.
- W2617755610 cites W1974081220 @default.
- W2617755610 cites W1982058126 @default.
- W2617755610 cites W1984451536 @default.
- W2617755610 cites W1984514811 @default.
- W2617755610 cites W1984516678 @default.
- W2617755610 cites W1991506583 @default.
- W2617755610 cites W1995654428 @default.
- W2617755610 cites W1997243365 @default.
- W2617755610 cites W2007425763 @default.
- W2617755610 cites W2012477883 @default.
- W2617755610 cites W2016062132 @default.
- W2617755610 cites W2028627221 @default.
- W2617755610 cites W2029219829 @default.
- W2617755610 cites W2032770027 @default.
- W2617755610 cites W2050743836 @default.
- W2617755610 cites W2053192745 @default.
- W2617755610 cites W2058064735 @default.
- W2617755610 cites W2060780420 @default.
- W2617755610 cites W2064393559 @default.
- W2617755610 cites W2075608300 @default.
- W2617755610 cites W2082714424 @default.
- W2617755610 cites W2082993037 @default.
- W2617755610 cites W2083443605 @default.
- W2617755610 cites W2086117354 @default.
- W2617755610 cites W2086558389 @default.
- W2617755610 cites W2088665921 @default.
- W2617755610 cites W2089073850 @default.
- W2617755610 cites W2092031707 @default.
- W2617755610 cites W2094825746 @default.
- W2617755610 cites W2095246401 @default.
- W2617755610 cites W2102343386 @default.
- W2617755610 cites W2103567403 @default.
- W2617755610 cites W2109296505 @default.
- W2617755610 cites W2116689721 @default.
- W2617755610 cites W2120786064 @default.
- W2617755610 cites W2126481883 @default.
- W2617755610 cites W2129113569 @default.
- W2617755610 cites W2131752879 @default.
- W2617755610 cites W2133910563 @default.
- W2617755610 cites W2136758825 @default.
- W2617755610 cites W2142341889 @default.
- W2617755610 cites W2142411210 @default.
- W2617755610 cites W2156366154 @default.
- W2617755610 cites W2159669130 @default.
- W2617755610 cites W2161495293 @default.
- W2617755610 cites W2163883177 @default.
- W2617755610 cites W2165802701 @default.
- W2617755610 cites W2225701511 @default.
- W2617755610 doi "https://doi.org/10.1016/j.rse.2017.05.027" @default.
- W2617755610 hasPublicationYear "2017" @default.
- W2617755610 type Work @default.
- W2617755610 sameAs 2617755610 @default.
- W2617755610 citedByCount "25" @default.
- W2617755610 countsByYear W26177556102018 @default.
- W2617755610 countsByYear W26177556102019 @default.
- W2617755610 countsByYear W26177556102020 @default.
- W2617755610 countsByYear W26177556102021 @default.
- W2617755610 countsByYear W26177556102022 @default.
- W2617755610 countsByYear W26177556102023 @default.
- W2617755610 crossrefType "journal-article" @default.
- W2617755610 hasAuthorship W2617755610A5026416332 @default.
- W2617755610 hasAuthorship W2617755610A5033613632 @default.
- W2617755610 hasAuthorship W2617755610A5047407506 @default.
- W2617755610 hasAuthorship W2617755610A5054977790 @default.
- W2617755610 hasAuthorship W2617755610A5063074934 @default.
- W2617755610 hasAuthorship W2617755610A5066738004 @default.
- W2617755610 hasAuthorship W2617755610A5085678150 @default.
- W2617755610 hasAuthorship W2617755610A5087801712 @default.
- W2617755610 hasConcept C108597893 @default.
- W2617755610 hasConcept C115961682 @default.
- W2617755610 hasConcept C120665830 @default.
- W2617755610 hasConcept C121332964 @default.
- W2617755610 hasConcept C127313418 @default.
- W2617755610 hasConcept C1276947 @default.
- W2617755610 hasConcept C130066347 @default.
- W2617755610 hasConcept C153294291 @default.
- W2617755610 hasConcept C154945302 @default.
- W2617755610 hasConcept C165838908 @default.