Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617761805> ?p ?o ?g. }
- W2617761805 endingPage "3795" @default.
- W2617761805 startingPage "3783" @default.
- W2617761805 abstract "The presence of different heterogeneous surfaces can directly influence the nucleation kinetics, crystal growth, and morphology of active pharmaceutical ingredients (APIs). However, a mechanistic understanding of heterogeneous nucleation remains lacking. Herein, we report the use of biocompatible crystalline heterogeneous surfaces to enhance the nucleation rates of the model API compound acetaminophen (APAP). We also report experimental and computational studies of the epitaxial growth mechanism of APAP on different substrates. Five crystalline substrates, namely, d-galactose (DGAL), the α and β forms of d-mannitol (DMAN), α-lactose monohydrate (LMH), and xylitol (XYL) were selected because they contain a similar functionality: a high density of hydroxyl groups per molecule. We measured the induction times in the presence of the substrates and used the results to rank the substrates based on their ability to enhance the nucleation of APAP. While all selected substrates enhanced the nucleation rates, XYL was particularly effective and enhanced the nucleation rate by a factor of 10 (average induction time: 85 min) relative to bulk nucleation (average induction time: 885 min). To determine the mechanism underlying the enhanced heterogeneous nucleation, we analyzed grown crystals using single crystal X-ray diffraction (SCXRD) and developed computational models of APAP–substrate interactions. Previously developed computational techniques, which are based solely on the level of lattice matching (geometric term) and ignore the importance of chemical interactions (energy term) between the crystallizing API and the substrate, were not effective in predicting and explaining our experimental results. Herein, we present a novel computational method that contains both energy and geometry terms to describe the nucleation of APAP on different crystalline substrates. First, we studied the energetics of the association of a single APAP molecule and a substrate. We found that an increase in the association energy is related to an increase in the effectiveness of the substrate for enhancing the nucleation rate. We next developed a method based on molecular dynamics (MD) simulations of the interaction between the different crystal faces of APAP and the substrates. The method predicted the epitaxial growth of the crystal face (001)APAP on top of the selected substrates based on strong hydrogen bond interactions with the substrates. The growth of the crystal face (001)APAP was confirmed by SCXRD." @default.
- W2617761805 created "2017-06-05" @default.
- W2617761805 creator A5000143645 @default.
- W2617761805 creator A5016324213 @default.
- W2617761805 creator A5053692881 @default.
- W2617761805 creator A5073498841 @default.
- W2617761805 creator A5077705392 @default.
- W2617761805 date "2017-06-02" @default.
- W2617761805 modified "2023-10-03" @default.
- W2617761805 title "Experimental and Mechanistic Study of the Heterogeneous Nucleation and Epitaxy of Acetaminophen with Biocompatible Crystalline Substrates" @default.
- W2617761805 cites W1645727676 @default.
- W2617761805 cites W1963845152 @default.
- W2617761805 cites W1965440213 @default.
- W2617761805 cites W1965580055 @default.
- W2617761805 cites W1966472574 @default.
- W2617761805 cites W1970027895 @default.
- W2617761805 cites W1971923872 @default.
- W2617761805 cites W1976161355 @default.
- W2617761805 cites W1979847090 @default.
- W2617761805 cites W1985451813 @default.
- W2617761805 cites W1994843916 @default.
- W2617761805 cites W1996439951 @default.
- W2617761805 cites W1997373404 @default.
- W2617761805 cites W1999471250 @default.
- W2617761805 cites W2001659301 @default.
- W2617761805 cites W2002618444 @default.
- W2617761805 cites W2002965999 @default.
- W2617761805 cites W2007860334 @default.
- W2617761805 cites W2014395670 @default.
- W2617761805 cites W2019886166 @default.
- W2617761805 cites W2020175320 @default.
- W2617761805 cites W2020863196 @default.
- W2617761805 cites W2021500188 @default.
- W2617761805 cites W2025558028 @default.
- W2617761805 cites W2026874211 @default.
- W2617761805 cites W2030576775 @default.
- W2617761805 cites W2035687084 @default.
- W2617761805 cites W2036588822 @default.
- W2617761805 cites W2039141867 @default.
- W2617761805 cites W2039834033 @default.
- W2617761805 cites W2041574733 @default.
- W2617761805 cites W2051091926 @default.
- W2617761805 cites W2066389338 @default.
- W2617761805 cites W2069726142 @default.
- W2617761805 cites W2070753604 @default.
- W2617761805 cites W2072194829 @default.
- W2617761805 cites W2072619030 @default.
- W2617761805 cites W2076757348 @default.
- W2617761805 cites W2077678828 @default.
- W2617761805 cites W2082070645 @default.
- W2617761805 cites W2091423064 @default.
- W2617761805 cites W2092698421 @default.
- W2617761805 cites W2092886084 @default.
- W2617761805 cites W2104086643 @default.
- W2617761805 cites W2115110079 @default.
- W2617761805 cites W2120194510 @default.
- W2617761805 cites W2131011009 @default.
- W2617761805 cites W2143367459 @default.
- W2617761805 cites W2151767264 @default.
- W2617761805 cites W2155917539 @default.
- W2617761805 cites W2162481922 @default.
- W2617761805 cites W2313558222 @default.
- W2617761805 cites W2317066560 @default.
- W2617761805 cites W2318329880 @default.
- W2617761805 cites W2324472556 @default.
- W2617761805 cites W2324648208 @default.
- W2617761805 cites W2327825876 @default.
- W2617761805 cites W2328134789 @default.
- W2617761805 cites W2330437081 @default.
- W2617761805 cites W2333565023 @default.
- W2617761805 cites W2474843957 @default.
- W2617761805 cites W2511620532 @default.
- W2617761805 cites W2518313499 @default.
- W2617761805 cites W2531973703 @default.
- W2617761805 cites W2557700557 @default.
- W2617761805 cites W2613493128 @default.
- W2617761805 cites W2953074840 @default.
- W2617761805 cites W4246043393 @default.
- W2617761805 doi "https://doi.org/10.1021/acs.cgd.7b00379" @default.
- W2617761805 hasPublicationYear "2017" @default.
- W2617761805 type Work @default.
- W2617761805 sameAs 2617761805 @default.
- W2617761805 citedByCount "22" @default.
- W2617761805 countsByYear W26177618052017 @default.
- W2617761805 countsByYear W26177618052018 @default.
- W2617761805 countsByYear W26177618052019 @default.
- W2617761805 countsByYear W26177618052020 @default.
- W2617761805 countsByYear W26177618052021 @default.
- W2617761805 countsByYear W26177618052023 @default.
- W2617761805 crossrefType "journal-article" @default.
- W2617761805 hasAuthorship W2617761805A5000143645 @default.
- W2617761805 hasAuthorship W2617761805A5016324213 @default.
- W2617761805 hasAuthorship W2617761805A5053692881 @default.
- W2617761805 hasAuthorship W2617761805A5073498841 @default.
- W2617761805 hasAuthorship W2617761805A5077705392 @default.
- W2617761805 hasConcept C110738630 @default.
- W2617761805 hasConcept C111368507 @default.
- W2617761805 hasConcept C127313418 @default.