Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617919282> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2617919282 endingPage "1850003" @default.
- W2617919282 startingPage "1850003" @default.
- W2617919282 abstract "The data are rapidly expanding nowadays, which makes it very difficult to analyze valuable information from big data. Most of the existing data mining algorithms deal with big data problems at large time and space costs. This paper focuses on the sampling problem of big data and puts forward an efficient heuristic Cluster Sampling Arithmetic, called CSA. Many of the former researchers adopted random method to extract early sample set from the original data and then made a variety of different processing of the sample in order to obtain the corresponding minimum sample set, which is regarded as a representation of the original big data set. However, the final processing results of big data will be severely affected by the random sampling process at the beginning, resulting in lower comprehensiveness and quality of the final data results and longer processing time. Based on this view, CSA introduces the idea of clustering to obtain minimum sample set of big data, which is in contrast to the random sampling method in the current literature. CSA makes cluster analysis of the original data set and selects the center of each class as centralized members of the minimum sample set. It aims at ensuring that the sample distribution accords with the characteristics of the original data, guarantees the data integrity and reduces the processing time. The max–min distance means that the pattern recognition has been integrated into the clustering process in order to get the clustering center and prevent algorithm from local optimum. The final experimental results show that, compared with the existing work, CSA algorithm can efficiently reflect the characteristics of the original data and reduce the time of data processing. The obtained minimum sample set has also achieved good effects in the classification algorithm." @default.
- W2617919282 created "2017-06-05" @default.
- W2617919282 creator A5020047350 @default.
- W2617919282 creator A5023902435 @default.
- W2617919282 creator A5044953356 @default.
- W2617919282 creator A5054683234 @default.
- W2617919282 creator A5068477244 @default.
- W2617919282 creator A5091839687 @default.
- W2617919282 date "2017-11-12" @default.
- W2617919282 modified "2023-09-30" @default.
- W2617919282 title "A Novel Clustering-Based Sampling Approach for Minimum Sample Set in Big Data Environment" @default.
- W2617919282 cites W1978954664 @default.
- W2617919282 cites W2038885675 @default.
- W2617919282 cites W2040263621 @default.
- W2617919282 cites W2053744138 @default.
- W2617919282 cites W2061451531 @default.
- W2617919282 cites W2129501055 @default.
- W2617919282 cites W2136824894 @default.
- W2617919282 cites W2165093166 @default.
- W2617919282 cites W4241941664 @default.
- W2617919282 cites W4300601563 @default.
- W2617919282 doi "https://doi.org/10.1142/s0218001418500039" @default.
- W2617919282 hasPublicationYear "2017" @default.
- W2617919282 type Work @default.
- W2617919282 sameAs 2617919282 @default.
- W2617919282 citedByCount "16" @default.
- W2617919282 countsByYear W26179192822018 @default.
- W2617919282 countsByYear W26179192822019 @default.
- W2617919282 countsByYear W26179192822020 @default.
- W2617919282 countsByYear W26179192822021 @default.
- W2617919282 countsByYear W26179192822022 @default.
- W2617919282 countsByYear W26179192822023 @default.
- W2617919282 crossrefType "journal-article" @default.
- W2617919282 hasAuthorship W2617919282A5020047350 @default.
- W2617919282 hasAuthorship W2617919282A5023902435 @default.
- W2617919282 hasAuthorship W2617919282A5044953356 @default.
- W2617919282 hasAuthorship W2617919282A5054683234 @default.
- W2617919282 hasAuthorship W2617919282A5068477244 @default.
- W2617919282 hasAuthorship W2617919282A5091839687 @default.
- W2617919282 hasConcept C100279318 @default.
- W2617919282 hasConcept C106131492 @default.
- W2617919282 hasConcept C124101348 @default.
- W2617919282 hasConcept C140779682 @default.
- W2617919282 hasConcept C154945302 @default.
- W2617919282 hasConcept C173801870 @default.
- W2617919282 hasConcept C177264268 @default.
- W2617919282 hasConcept C185592680 @default.
- W2617919282 hasConcept C198531522 @default.
- W2617919282 hasConcept C199360897 @default.
- W2617919282 hasConcept C31972630 @default.
- W2617919282 hasConcept C41008148 @default.
- W2617919282 hasConcept C43617362 @default.
- W2617919282 hasConcept C58489278 @default.
- W2617919282 hasConcept C73555534 @default.
- W2617919282 hasConcept C75684735 @default.
- W2617919282 hasConceptScore W2617919282C100279318 @default.
- W2617919282 hasConceptScore W2617919282C106131492 @default.
- W2617919282 hasConceptScore W2617919282C124101348 @default.
- W2617919282 hasConceptScore W2617919282C140779682 @default.
- W2617919282 hasConceptScore W2617919282C154945302 @default.
- W2617919282 hasConceptScore W2617919282C173801870 @default.
- W2617919282 hasConceptScore W2617919282C177264268 @default.
- W2617919282 hasConceptScore W2617919282C185592680 @default.
- W2617919282 hasConceptScore W2617919282C198531522 @default.
- W2617919282 hasConceptScore W2617919282C199360897 @default.
- W2617919282 hasConceptScore W2617919282C31972630 @default.
- W2617919282 hasConceptScore W2617919282C41008148 @default.
- W2617919282 hasConceptScore W2617919282C43617362 @default.
- W2617919282 hasConceptScore W2617919282C58489278 @default.
- W2617919282 hasConceptScore W2617919282C73555534 @default.
- W2617919282 hasConceptScore W2617919282C75684735 @default.
- W2617919282 hasIssue "02" @default.
- W2617919282 hasLocation W26179192821 @default.
- W2617919282 hasOpenAccess W2617919282 @default.
- W2617919282 hasPrimaryLocation W26179192821 @default.
- W2617919282 hasRelatedWork W2146483359 @default.
- W2617919282 hasRelatedWork W2286998681 @default.
- W2617919282 hasRelatedWork W2370909876 @default.
- W2617919282 hasRelatedWork W2383176466 @default.
- W2617919282 hasRelatedWork W2608158510 @default.
- W2617919282 hasRelatedWork W2734587838 @default.
- W2617919282 hasRelatedWork W2739598002 @default.
- W2617919282 hasRelatedWork W2953411182 @default.
- W2617919282 hasRelatedWork W4226091590 @default.
- W2617919282 hasRelatedWork W4292102651 @default.
- W2617919282 hasVolume "32" @default.
- W2617919282 isParatext "false" @default.
- W2617919282 isRetracted "false" @default.
- W2617919282 magId "2617919282" @default.
- W2617919282 workType "article" @default.