Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617990047> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2617990047 endingPage "408" @default.
- W2617990047 startingPage "385" @default.
- W2617990047 abstract "Large amounts of data about the patients with their medical conditions are presented in the Medical databases. Analyzing all these databases is one of the difficult tasks in the medical environment. In order to warehouse all these databases and to analyze the patient’s condition, we need an efficient data mining technique. In this paper, an efficient data mining technique for warehousing clinical databases using Rough Set Theory (RST) and Fuzzy Logic is proposed. Our proposed methodology contains two phases – (i) Clustering and (ii) Classification. In the first phase, Rough Set Theory is used for clustering. Clustering is one of the data mining techniques for warehousing the heterogeneous data bases. Clustering technique is used to group data that have similar characteristics in the same cluster and also to group the data that have dissimilar characteristics with other clusters. After clustering the data, similar objects will be clustered in one cluster and the dissimilar objects will be clustered under another cluster. The RST can be reduced the complexity. Then in the second phase, these clusters are classified using Fuzzy Logic. Normally, Classification with Fuzzy Logic is generated more number of rules. Since the RST is utilized in our work, the classification using Fuzzy can be done with less amount of complexity. The proposed approach is evaluated using various clinical related databases from heart disease datasets – Cleveland, Switzerland and Hungarian. The performance analysis is based on Sensitivity, Specificity and Accuracy with different cluster numbers. The experimentation results show that our proposed methodology provides better accuracy result." @default.
- W2617990047 created "2017-06-05" @default.
- W2617990047 creator A5005646526 @default.
- W2617990047 creator A5070832749 @default.
- W2617990047 date "2017-05-22" @default.
- W2617990047 modified "2023-09-25" @default.
- W2617990047 title "Rough Set Theory and Fuzzy Logic Based Warehousing of Heterogeneous Clinical Databases" @default.
- W2617990047 cites W1130077638 @default.
- W2617990047 cites W1972532012 @default.
- W2617990047 cites W1975994385 @default.
- W2617990047 cites W1982522576 @default.
- W2617990047 cites W1982869853 @default.
- W2617990047 cites W1998778961 @default.
- W2617990047 cites W2020287868 @default.
- W2617990047 cites W2071337565 @default.
- W2617990047 cites W2092890616 @default.
- W2617990047 cites W2114842946 @default.
- W2617990047 cites W2116896485 @default.
- W2617990047 cites W2123123669 @default.
- W2617990047 cites W2159984894 @default.
- W2617990047 cites W2205836001 @default.
- W2617990047 doi "https://doi.org/10.1142/s0218488517500167" @default.
- W2617990047 hasPublicationYear "2017" @default.
- W2617990047 type Work @default.
- W2617990047 sameAs 2617990047 @default.
- W2617990047 citedByCount "7" @default.
- W2617990047 countsByYear W26179900472019 @default.
- W2617990047 countsByYear W26179900472020 @default.
- W2617990047 countsByYear W26179900472022 @default.
- W2617990047 crossrefType "journal-article" @default.
- W2617990047 hasAuthorship W2617990047A5005646526 @default.
- W2617990047 hasAuthorship W2617990047A5070832749 @default.
- W2617990047 hasConcept C111012933 @default.
- W2617990047 hasConcept C124101348 @default.
- W2617990047 hasConcept C135572916 @default.
- W2617990047 hasConcept C154945302 @default.
- W2617990047 hasConcept C17212007 @default.
- W2617990047 hasConcept C177264268 @default.
- W2617990047 hasConcept C199360897 @default.
- W2617990047 hasConcept C41008148 @default.
- W2617990047 hasConcept C42011625 @default.
- W2617990047 hasConcept C58166 @default.
- W2617990047 hasConcept C73555534 @default.
- W2617990047 hasConcept C77088390 @default.
- W2617990047 hasConceptScore W2617990047C111012933 @default.
- W2617990047 hasConceptScore W2617990047C124101348 @default.
- W2617990047 hasConceptScore W2617990047C135572916 @default.
- W2617990047 hasConceptScore W2617990047C154945302 @default.
- W2617990047 hasConceptScore W2617990047C17212007 @default.
- W2617990047 hasConceptScore W2617990047C177264268 @default.
- W2617990047 hasConceptScore W2617990047C199360897 @default.
- W2617990047 hasConceptScore W2617990047C41008148 @default.
- W2617990047 hasConceptScore W2617990047C42011625 @default.
- W2617990047 hasConceptScore W2617990047C58166 @default.
- W2617990047 hasConceptScore W2617990047C73555534 @default.
- W2617990047 hasConceptScore W2617990047C77088390 @default.
- W2617990047 hasIssue "03" @default.
- W2617990047 hasLocation W26179900471 @default.
- W2617990047 hasOpenAccess W2617990047 @default.
- W2617990047 hasPrimaryLocation W26179900471 @default.
- W2617990047 hasRelatedWork W1970415336 @default.
- W2617990047 hasRelatedWork W1985411338 @default.
- W2617990047 hasRelatedWork W1996875414 @default.
- W2617990047 hasRelatedWork W2029568075 @default.
- W2617990047 hasRelatedWork W2146909822 @default.
- W2617990047 hasRelatedWork W2326124653 @default.
- W2617990047 hasRelatedWork W2370210292 @default.
- W2617990047 hasRelatedWork W2375192125 @default.
- W2617990047 hasRelatedWork W2540776335 @default.
- W2617990047 hasRelatedWork W2569413172 @default.
- W2617990047 hasVolume "25" @default.
- W2617990047 isParatext "false" @default.
- W2617990047 isRetracted "false" @default.
- W2617990047 magId "2617990047" @default.
- W2617990047 workType "article" @default.