Matches in SemOpenAlex for { <https://semopenalex.org/work/W2617994470> ?p ?o ?g. }
- W2617994470 endingPage "429" @default.
- W2617994470 startingPage "249" @default.
- W2617994470 abstract "Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions." @default.
- W2617994470 created "2017-06-05" @default.
- W2617994470 creator A5004111307 @default.
- W2617994470 creator A5018676117 @default.
- W2617994470 creator A5044459374 @default.
- W2617994470 creator A5046992958 @default.
- W2617994470 creator A5063407210 @default.
- W2617994470 creator A5083182987 @default.
- W2617994470 creator A5083199565 @default.
- W2617994470 date "2017-01-01" @default.
- W2617994470 modified "2023-09-25" @default.
- W2617994470 title "Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives" @default.
- W2617994470 cites W115063971 @default.
- W2617994470 cites W1246381107 @default.
- W2617994470 cites W143004564 @default.
- W2617994470 cites W1506018867 @default.
- W2617994470 cites W1529624360 @default.
- W2617994470 cites W1529944915 @default.
- W2617994470 cites W1531635645 @default.
- W2617994470 cites W1532981938 @default.
- W2617994470 cites W1538092215 @default.
- W2617994470 cites W1543207505 @default.
- W2617994470 cites W1550261137 @default.
- W2617994470 cites W1560724230 @default.
- W2617994470 cites W1562561653 @default.
- W2617994470 cites W1568416770 @default.
- W2617994470 cites W1580176742 @default.
- W2617994470 cites W1596717185 @default.
- W2617994470 cites W1636040588 @default.
- W2617994470 cites W1672347394 @default.
- W2617994470 cites W1706897027 @default.
- W2617994470 cites W1746819321 @default.
- W2617994470 cites W1755177043 @default.
- W2617994470 cites W1767074320 @default.
- W2617994470 cites W1798945469 @default.
- W2617994470 cites W1804110266 @default.
- W2617994470 cites W1809064205 @default.
- W2617994470 cites W1813659000 @default.
- W2617994470 cites W1825959699 @default.
- W2617994470 cites W1857623074 @default.
- W2617994470 cites W188469127 @default.
- W2617994470 cites W189596042 @default.
- W2617994470 cites W192084854 @default.
- W2617994470 cites W1922629554 @default.
- W2617994470 cites W1940947342 @default.
- W2617994470 cites W1949511783 @default.
- W2617994470 cites W1954993463 @default.
- W2617994470 cites W1967077133 @default.
- W2617994470 cites W1967696752 @default.
- W2617994470 cites W1967859589 @default.
- W2617994470 cites W1968108554 @default.
- W2617994470 cites W1968119930 @default.
- W2617994470 cites W1972710290 @default.
- W2617994470 cites W1977406817 @default.
- W2617994470 cites W1980906180 @default.
- W2617994470 cites W1983467829 @default.
- W2617994470 cites W1984674598 @default.
- W2617994470 cites W1986580828 @default.
- W2617994470 cites W1988001416 @default.
- W2617994470 cites W1988219946 @default.
- W2617994470 cites W1989786408 @default.
- W2617994470 cites W1991380130 @default.
- W2617994470 cites W1992918752 @default.
- W2617994470 cites W1993482030 @default.
- W2617994470 cites W1994584414 @default.
- W2617994470 cites W1996869553 @default.
- W2617994470 cites W1997038974 @default.
- W2617994470 cites W1997281466 @default.
- W2617994470 cites W1998126383 @default.
- W2617994470 cites W1998258511 @default.
- W2617994470 cites W2000345836 @default.
- W2617994470 cites W2003905570 @default.
- W2617994470 cites W2004870211 @default.
- W2617994470 cites W2008334035 @default.
- W2617994470 cites W2008657736 @default.
- W2617994470 cites W2010560128 @default.
- W2617994470 cites W2011256616 @default.
- W2617994470 cites W2013807324 @default.
- W2617994470 cites W2019741430 @default.
- W2617994470 cites W2028324955 @default.
- W2617994470 cites W2028847290 @default.
- W2617994470 cites W2029798558 @default.
- W2617994470 cites W2031049553 @default.
- W2617994470 cites W2031216664 @default.
- W2617994470 cites W2036133196 @default.
- W2617994470 cites W2036604884 @default.
- W2617994470 cites W2037271374 @default.
- W2617994470 cites W2037768897 @default.
- W2617994470 cites W2038198231 @default.
- W2617994470 cites W2041408102 @default.
- W2617994470 cites W2042901969 @default.
- W2617994470 cites W2047631354 @default.
- W2617994470 cites W2050838977 @default.
- W2617994470 cites W2050954206 @default.
- W2617994470 cites W2051138304 @default.
- W2617994470 cites W2055670190 @default.
- W2617994470 cites W2061808582 @default.
- W2617994470 cites W2062692432 @default.