Matches in SemOpenAlex for { <https://semopenalex.org/work/W2618371314> ?p ?o ?g. }
- W2618371314 endingPage "503" @default.
- W2618371314 startingPage "489" @default.
- W2618371314 abstract "Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the capability of a generalized regression neural network (GRNN) model combined with GIS techniques to explore the impact of climate change on rangeland forage production. Specifically, a dataset of 115 monitored records of forage production were collected from 16 rangeland sites during the period 1998–2007 in Isfahan Province, Central Iran. Neural network models were designed using the monitored forage production values and available environmental data (including climate and topography data), and the performance of each network model was assessed using the mean estimation error (MEE), model efficiency factor (MEF), and correlation coefficient (r). The best neural network model was then selected and further applied to predict the forage production of rangelands in the future (in 2030 and 2080) under A1B climate change scenario using Hadley Centre coupled model. The present and future forage production maps were also produced. Rangeland forage production exhibited strong correlations with environmental factors, such as slope, elevation, aspect and annual temperature. The present forage production in the study area varied from 25.6 to 574.1 kg/hm2. Under climate change scenario, the annual temperature was predicted to increase and the annual precipitation was predicted to decrease. The prediction maps of forage production in the future indicated that the area with low level of forage production (0–100 kg/hm2) will increase while the areas with moderate, moderately high and high levels of forage production (≥100 kg/hm2) will decrease both in 2030 and in 2080, which may be attributable to the increasing annual temperature and decreasing annual precipitation. It was predicted that forage production of rangelands will decrease in the next couple of decades, especially in the western and southern parts of Isfahan Province. These changes are more pronounced in elevations between 2200 and 2900 m. Therefore, rangeland managers have to cope with these changes by holistic management approaches through mitigation and human adaptations." @default.
- W2618371314 created "2017-06-05" @default.
- W2618371314 creator A5034322356 @default.
- W2618371314 creator A5063662143 @default.
- W2618371314 creator A5068640895 @default.
- W2618371314 creator A5071090967 @default.
- W2618371314 date "2017-05-24" @default.
- W2618371314 modified "2023-09-27" @default.
- W2618371314 title "Modelling the impact of climate change on rangeland forage production using a generalized regression neural network: a case study in Isfahan Province, Central Iran" @default.
- W2618371314 cites W1967250513 @default.
- W2618371314 cites W1968572151 @default.
- W2618371314 cites W1971852746 @default.
- W2618371314 cites W1989473331 @default.
- W2618371314 cites W1996613904 @default.
- W2618371314 cites W2000532370 @default.
- W2618371314 cites W2002153264 @default.
- W2618371314 cites W2004813502 @default.
- W2618371314 cites W2008374411 @default.
- W2618371314 cites W2008600329 @default.
- W2618371314 cites W2010681412 @default.
- W2618371314 cites W2017148147 @default.
- W2618371314 cites W2029866731 @default.
- W2618371314 cites W2031061930 @default.
- W2618371314 cites W2034672914 @default.
- W2618371314 cites W2036013959 @default.
- W2618371314 cites W2037633404 @default.
- W2618371314 cites W2049525697 @default.
- W2618371314 cites W2053180127 @default.
- W2618371314 cites W2058731966 @default.
- W2618371314 cites W2068985303 @default.
- W2618371314 cites W2070676234 @default.
- W2618371314 cites W2073396232 @default.
- W2618371314 cites W2073502964 @default.
- W2618371314 cites W2087362004 @default.
- W2618371314 cites W2094633306 @default.
- W2618371314 cites W2099485026 @default.
- W2618371314 cites W2106779184 @default.
- W2618371314 cites W2113376851 @default.
- W2618371314 cites W2114233199 @default.
- W2618371314 cites W2114475796 @default.
- W2618371314 cites W2116409775 @default.
- W2618371314 cites W2117329279 @default.
- W2618371314 cites W2118448272 @default.
- W2618371314 cites W2120160157 @default.
- W2618371314 cites W2123855284 @default.
- W2618371314 cites W2127369514 @default.
- W2618371314 cites W2129343301 @default.
- W2618371314 cites W2131511130 @default.
- W2618371314 cites W2134289299 @default.
- W2618371314 cites W2136253503 @default.
- W2618371314 cites W2141060538 @default.
- W2618371314 cites W2144362885 @default.
- W2618371314 cites W2167705142 @default.
- W2618371314 cites W2169941254 @default.
- W2618371314 cites W2329682243 @default.
- W2618371314 cites W2517586786 @default.
- W2618371314 cites W2556146423 @default.
- W2618371314 cites W2621972919 @default.
- W2618371314 cites W2795526211 @default.
- W2618371314 cites W2949071206 @default.
- W2618371314 cites W4231814779 @default.
- W2618371314 doi "https://doi.org/10.1007/s40333-017-0058-7" @default.
- W2618371314 hasPublicationYear "2017" @default.
- W2618371314 type Work @default.
- W2618371314 sameAs 2618371314 @default.
- W2618371314 citedByCount "7" @default.
- W2618371314 countsByYear W26183713142018 @default.
- W2618371314 countsByYear W26183713142020 @default.
- W2618371314 countsByYear W26183713142021 @default.
- W2618371314 countsByYear W26183713142022 @default.
- W2618371314 countsByYear W26183713142023 @default.
- W2618371314 crossrefType "journal-article" @default.
- W2618371314 hasAuthorship W2618371314A5034322356 @default.
- W2618371314 hasAuthorship W2618371314A5063662143 @default.
- W2618371314 hasAuthorship W2618371314A5068640895 @default.
- W2618371314 hasAuthorship W2618371314A5071090967 @default.
- W2618371314 hasBestOaLocation W26183713142 @default.
- W2618371314 hasConcept C100970517 @default.
- W2618371314 hasConcept C107054158 @default.
- W2618371314 hasConcept C130989795 @default.
- W2618371314 hasConcept C132651083 @default.
- W2618371314 hasConcept C139719470 @default.
- W2618371314 hasConcept C153294291 @default.
- W2618371314 hasConcept C162324750 @default.
- W2618371314 hasConcept C18903297 @default.
- W2618371314 hasConcept C205649164 @default.
- W2618371314 hasConcept C2777904157 @default.
- W2618371314 hasConcept C2778348673 @default.
- W2618371314 hasConcept C2779370140 @default.
- W2618371314 hasConcept C39432304 @default.
- W2618371314 hasConcept C54286561 @default.
- W2618371314 hasConcept C86803240 @default.
- W2618371314 hasConceptScore W2618371314C100970517 @default.
- W2618371314 hasConceptScore W2618371314C107054158 @default.
- W2618371314 hasConceptScore W2618371314C130989795 @default.
- W2618371314 hasConceptScore W2618371314C132651083 @default.
- W2618371314 hasConceptScore W2618371314C139719470 @default.
- W2618371314 hasConceptScore W2618371314C153294291 @default.