Matches in SemOpenAlex for { <https://semopenalex.org/work/W2619038102> ?p ?o ?g. }
- W2619038102 abstract "Similarly to many areas of Artificial Intelligence, Logic as well has approached the definition of inferential systems that take into account elements from real-life situations. In particular, logical treatments have been trying to deal with the phenomena of vagueness and uncertainty. While a degree-based computational model of vagueness has been investigated through fuzzy set theory [88] and fuzzy logics, the study of uncertainty has been dealt with from the measure-theoretic point of view, which has also served as a basis to define logics of uncertainty (see e.g. [57]). Fuzzy logics rely on the idea that truth comes in degrees. The inherent vagueness in many real-life declarative statements makes it impossible to predicate their full truth or full falsity. For this reason, propositions are taken as statements that can be regarded as partially true. Measures of uncertainty aim at formalizing the strength of our beliefs in the occurrence of some events by assigning to those events a degree of belief concerning their occurrence. From the mathematical point of view, a measure of uncertainty is a function that assigns to each event (understood here as a formula in a specific logical language LC) a value from a given scale, usually the real unit interval [0,1], under some suitable constraints. A well-known example is given by probability measures which try to capture our degree of confidence in the occurrence of events by additive [0, 1]-valued assignments. Both fuzzy set theory and measures of uncertainty are linked by the need of intermediate values in their semantics, but they are essentially different. In particular, in the field of logics, a significant difference between fuzzy and probabilistic logic regards the fact that, while intermediate degrees of truth in fuzzy logic are compositional (i.e. the truth degree of a compound formula φ ◦ψ only depends on the truth degrees of the simpler formulas φ and ψ), degrees of belief are not. In fact, for instance, the probability of a conjunction φ ∧ψ is not always a function of the probability of φ and the probability of ψ . Therefore, while fuzzy logics behave as (truth-functional) many-valued logics, probabilistic logics can be rather regarded as a kind of modal logics (cf. [50, 51] for instance)." @default.
- W2619038102 created "2017-06-05" @default.
- W2619038102 creator A5025216560 @default.
- W2619038102 creator A5043853722 @default.
- W2619038102 creator A5072818908 @default.
- W2619038102 creator A5091130725 @default.
- W2619038102 date "2011-01-01" @default.
- W2619038102 modified "2023-10-18" @default.
- W2619038102 title "Reasoning about uncertainty of fuzzy events: an overview" @default.
- W2619038102 cites W145060756 @default.
- W2619038102 cites W1479890383 @default.
- W2619038102 cites W1490942685 @default.
- W2619038102 cites W1491699608 @default.
- W2619038102 cites W1511669762 @default.
- W2619038102 cites W1516119557 @default.
- W2619038102 cites W1518606886 @default.
- W2619038102 cites W1526328753 @default.
- W2619038102 cites W1526495294 @default.
- W2619038102 cites W1529265550 @default.
- W2619038102 cites W1544212186 @default.
- W2619038102 cites W1548573677 @default.
- W2619038102 cites W1565385188 @default.
- W2619038102 cites W1566552629 @default.
- W2619038102 cites W1568586753 @default.
- W2619038102 cites W1580473189 @default.
- W2619038102 cites W1581017058 @default.
- W2619038102 cites W1608935641 @default.
- W2619038102 cites W161157074 @default.
- W2619038102 cites W1692193156 @default.
- W2619038102 cites W1771584566 @default.
- W2619038102 cites W1817336995 @default.
- W2619038102 cites W1823694525 @default.
- W2619038102 cites W1909566981 @default.
- W2619038102 cites W1967383777 @default.
- W2619038102 cites W1975853435 @default.
- W2619038102 cites W1983382657 @default.
- W2619038102 cites W1984784892 @default.
- W2619038102 cites W1988669396 @default.
- W2619038102 cites W1989525411 @default.
- W2619038102 cites W1993433997 @default.
- W2619038102 cites W1994369562 @default.
- W2619038102 cites W1998045799 @default.
- W2619038102 cites W2001450968 @default.
- W2619038102 cites W2004039065 @default.
- W2619038102 cites W2004739217 @default.
- W2619038102 cites W2012072427 @default.
- W2619038102 cites W2018957484 @default.
- W2619038102 cites W2019950953 @default.
- W2619038102 cites W2020193090 @default.
- W2619038102 cites W2022971483 @default.
- W2619038102 cites W2038051410 @default.
- W2619038102 cites W2038190934 @default.
- W2619038102 cites W2042415202 @default.
- W2619038102 cites W2043870082 @default.
- W2619038102 cites W2044856880 @default.
- W2619038102 cites W2047723833 @default.
- W2619038102 cites W2047824783 @default.
- W2619038102 cites W2063518451 @default.
- W2619038102 cites W2067787770 @default.
- W2619038102 cites W2072191370 @default.
- W2619038102 cites W2106084705 @default.
- W2619038102 cites W2110182592 @default.
- W2619038102 cites W2119353490 @default.
- W2619038102 cites W2123815850 @default.
- W2619038102 cites W2134885189 @default.
- W2619038102 cites W2143666039 @default.
- W2619038102 cites W2148905892 @default.
- W2619038102 cites W2164429865 @default.
- W2619038102 cites W2170949654 @default.
- W2619038102 cites W2303901840 @default.
- W2619038102 cites W2797148637 @default.
- W2619038102 cites W2799061192 @default.
- W2619038102 cites W2801469778 @default.
- W2619038102 cites W2912565176 @default.
- W2619038102 cites W2914334278 @default.
- W2619038102 cites W3043771091 @default.
- W2619038102 cites W39263536 @default.
- W2619038102 cites W43237915 @default.
- W2619038102 cites W91949086 @default.
- W2619038102 cites W932641379 @default.
- W2619038102 cites W1811323084 @default.
- W2619038102 hasPublicationYear "2011" @default.
- W2619038102 type Work @default.
- W2619038102 sameAs 2619038102 @default.
- W2619038102 citedByCount "4" @default.
- W2619038102 countsByYear W26190381022012 @default.
- W2619038102 countsByYear W26190381022013 @default.
- W2619038102 countsByYear W26190381022019 @default.
- W2619038102 crossrefType "book-chapter" @default.
- W2619038102 hasAuthorship W2619038102A5025216560 @default.
- W2619038102 hasAuthorship W2619038102A5043853722 @default.
- W2619038102 hasAuthorship W2619038102A5072818908 @default.
- W2619038102 hasAuthorship W2619038102A5091130725 @default.
- W2619038102 hasConcept C111472728 @default.
- W2619038102 hasConcept C118615104 @default.
- W2619038102 hasConcept C128394911 @default.
- W2619038102 hasConcept C138885662 @default.
- W2619038102 hasConcept C140146324 @default.
- W2619038102 hasConcept C154945302 @default.
- W2619038102 hasConcept C17350324 @default.