Matches in SemOpenAlex for { <https://semopenalex.org/work/W2619220912> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2619220912 endingPage "282" @default.
- W2619220912 startingPage "275" @default.
- W2619220912 abstract "The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model." @default.
- W2619220912 created "2017-06-05" @default.
- W2619220912 creator A5010848148 @default.
- W2619220912 creator A5015371640 @default.
- W2619220912 creator A5065262014 @default.
- W2619220912 date "2017-03-25" @default.
- W2619220912 modified "2023-10-17" @default.
- W2619220912 title "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models" @default.
- W2619220912 doi "https://doi.org/10.12989/cac.2017.19.3.275" @default.
- W2619220912 hasPublicationYear "2017" @default.
- W2619220912 type Work @default.
- W2619220912 sameAs 2619220912 @default.
- W2619220912 citedByCount "25" @default.
- W2619220912 countsByYear W26192209122019 @default.
- W2619220912 countsByYear W26192209122020 @default.
- W2619220912 countsByYear W26192209122021 @default.
- W2619220912 countsByYear W26192209122022 @default.
- W2619220912 countsByYear W26192209122023 @default.
- W2619220912 crossrefType "journal-article" @default.
- W2619220912 hasAuthorship W2619220912A5010848148 @default.
- W2619220912 hasAuthorship W2619220912A5015371640 @default.
- W2619220912 hasAuthorship W2619220912A5065262014 @default.
- W2619220912 hasConcept C127413603 @default.
- W2619220912 hasConcept C130767629 @default.
- W2619220912 hasConcept C159985019 @default.
- W2619220912 hasConcept C187320778 @default.
- W2619220912 hasConcept C192562407 @default.
- W2619220912 hasConcept C30407753 @default.
- W2619220912 hasConcept C523993062 @default.
- W2619220912 hasConceptScore W2619220912C127413603 @default.
- W2619220912 hasConceptScore W2619220912C130767629 @default.
- W2619220912 hasConceptScore W2619220912C159985019 @default.
- W2619220912 hasConceptScore W2619220912C187320778 @default.
- W2619220912 hasConceptScore W2619220912C192562407 @default.
- W2619220912 hasConceptScore W2619220912C30407753 @default.
- W2619220912 hasConceptScore W2619220912C523993062 @default.
- W2619220912 hasIssue "3" @default.
- W2619220912 hasLocation W26192209121 @default.
- W2619220912 hasOpenAccess W2619220912 @default.
- W2619220912 hasPrimaryLocation W26192209121 @default.
- W2619220912 hasRelatedWork W2085236053 @default.
- W2619220912 hasRelatedWork W2225113568 @default.
- W2619220912 hasRelatedWork W2389731263 @default.
- W2619220912 hasRelatedWork W2531286232 @default.
- W2619220912 hasRelatedWork W2944045227 @default.
- W2619220912 hasRelatedWork W3092764690 @default.
- W2619220912 hasRelatedWork W3119944800 @default.
- W2619220912 hasRelatedWork W3122290642 @default.
- W2619220912 hasRelatedWork W3183072453 @default.
- W2619220912 hasRelatedWork W3194331108 @default.
- W2619220912 hasVolume "19" @default.
- W2619220912 isParatext "false" @default.
- W2619220912 isRetracted "false" @default.
- W2619220912 magId "2619220912" @default.
- W2619220912 workType "article" @default.