Matches in SemOpenAlex for { <https://semopenalex.org/work/W2619261808> ?p ?o ?g. }
- W2619261808 endingPage "384" @default.
- W2619261808 startingPage "377" @default.
- W2619261808 abstract "Abstract Phytoliths, as one of the important sources of microfossils, have been widely used in paleobotany‐related studies, especially in the grass family (Poaceae) where abundant phytoliths are found. Despite great efforts, several challenges remain when phytoliths are used in various studies, including the accurate description of phytolith morphology and the effective utilization of phytolith traits in taxon identification or discrimination. In this study, we analyzed over 1000 phytolith samples from 18 taxa representing seven main genera in the tribe Oryzeae (subfamily Ehrhartoideae) and five taxa in the subfamilies Bambusoideae and Pooideae. By focusing on Oryzeae, which has been extensively investigated in terms of taxonomy and phylogeny, we were able to evaluate the discrimination power of phytoliths at lower taxonomic levels in grasses. With the help of morphometric analysis and by introducing several machine learning algorithms, we found that 87.7% of the phytolith samples could be classified correctly at the genus level. In spite of slightly different performances, all four machine learning algorithms significantly increased the resolving power of phytolith evidence in taxon identification and discrimination compared with the traditional phytolith analysis. Therefore, we propose a pipeline of phytolith analyses based on machine learning algorithms, including data collection, morphometric analysis, model building, and taxon discrimination. The methodology and pipeline presented here should be applied to various studies across different groups of plants. This study provides new insights into the utilization of phytoliths in evolutionary and ecology studies involving grasses and plants in general." @default.
- W2619261808 created "2017-06-05" @default.
- W2619261808 creator A5012319631 @default.
- W2619261808 creator A5089102739 @default.
- W2619261808 date "2017-07-01" @default.
- W2619261808 modified "2023-10-16" @default.
- W2619261808 title "Machine learning algorithms improve the power of phytolith analysis: A case study of the tribe Oryzeae (Poaceae)" @default.
- W2619261808 cites W1436603058 @default.
- W2619261808 cites W1474297142 @default.
- W2619261808 cites W1696285795 @default.
- W2619261808 cites W1874621318 @default.
- W2619261808 cites W1901616594 @default.
- W2619261808 cites W1974019200 @default.
- W2619261808 cites W1976446360 @default.
- W2619261808 cites W1988834217 @default.
- W2619261808 cites W2000009328 @default.
- W2619261808 cites W2003530850 @default.
- W2619261808 cites W2006126312 @default.
- W2619261808 cites W2008028839 @default.
- W2619261808 cites W2008433405 @default.
- W2619261808 cites W2015855412 @default.
- W2619261808 cites W2021421539 @default.
- W2619261808 cites W2027170329 @default.
- W2619261808 cites W2051688318 @default.
- W2619261808 cites W2058044042 @default.
- W2619261808 cites W2063650519 @default.
- W2619261808 cites W2084241460 @default.
- W2619261808 cites W2084829620 @default.
- W2619261808 cites W2091355719 @default.
- W2619261808 cites W2097831194 @default.
- W2619261808 cites W2102993956 @default.
- W2619261808 cites W2106309274 @default.
- W2619261808 cites W2110379543 @default.
- W2619261808 cites W2117814497 @default.
- W2619261808 cites W2118020653 @default.
- W2619261808 cites W2119806305 @default.
- W2619261808 cites W2131884020 @default.
- W2619261808 cites W2132549764 @default.
- W2619261808 cites W2132661331 @default.
- W2619261808 cites W2132974199 @default.
- W2619261808 cites W2134575803 @default.
- W2619261808 cites W2142860007 @default.
- W2619261808 cites W2146989027 @default.
- W2619261808 cites W2152570988 @default.
- W2619261808 cites W2157319590 @default.
- W2619261808 cites W2227118829 @default.
- W2619261808 cites W2257979135 @default.
- W2619261808 cites W2308112489 @default.
- W2619261808 cites W2573243474 @default.
- W2619261808 cites W273974525 @default.
- W2619261808 cites W4238530616 @default.
- W2619261808 cites W4239510810 @default.
- W2619261808 cites W4247641519 @default.
- W2619261808 cites W4251478274 @default.
- W2619261808 cites W87185627 @default.
- W2619261808 doi "https://doi.org/10.1111/jse.12258" @default.
- W2619261808 hasPublicationYear "2017" @default.
- W2619261808 type Work @default.
- W2619261808 sameAs 2619261808 @default.
- W2619261808 citedByCount "14" @default.
- W2619261808 countsByYear W26192618082017 @default.
- W2619261808 countsByYear W26192618082018 @default.
- W2619261808 countsByYear W26192618082019 @default.
- W2619261808 countsByYear W26192618082020 @default.
- W2619261808 countsByYear W26192618082021 @default.
- W2619261808 countsByYear W26192618082022 @default.
- W2619261808 countsByYear W26192618082023 @default.
- W2619261808 crossrefType "journal-article" @default.
- W2619261808 hasAuthorship W2619261808A5012319631 @default.
- W2619261808 hasAuthorship W2619261808A5089102739 @default.
- W2619261808 hasBestOaLocation W26192618081 @default.
- W2619261808 hasConcept C104317684 @default.
- W2619261808 hasConcept C116834253 @default.
- W2619261808 hasConcept C144024400 @default.
- W2619261808 hasConcept C19165224 @default.
- W2619261808 hasConcept C2776240908 @default.
- W2619261808 hasConcept C2779121571 @default.
- W2619261808 hasConcept C2780618852 @default.
- W2619261808 hasConcept C46757340 @default.
- W2619261808 hasConcept C55493867 @default.
- W2619261808 hasConcept C58642233 @default.
- W2619261808 hasConcept C59822182 @default.
- W2619261808 hasConcept C71640776 @default.
- W2619261808 hasConcept C78458016 @default.
- W2619261808 hasConcept C86803240 @default.
- W2619261808 hasConcept C90132467 @default.
- W2619261808 hasConceptScore W2619261808C104317684 @default.
- W2619261808 hasConceptScore W2619261808C116834253 @default.
- W2619261808 hasConceptScore W2619261808C144024400 @default.
- W2619261808 hasConceptScore W2619261808C19165224 @default.
- W2619261808 hasConceptScore W2619261808C2776240908 @default.
- W2619261808 hasConceptScore W2619261808C2779121571 @default.
- W2619261808 hasConceptScore W2619261808C2780618852 @default.
- W2619261808 hasConceptScore W2619261808C46757340 @default.
- W2619261808 hasConceptScore W2619261808C55493867 @default.
- W2619261808 hasConceptScore W2619261808C58642233 @default.
- W2619261808 hasConceptScore W2619261808C59822182 @default.
- W2619261808 hasConceptScore W2619261808C71640776 @default.