Matches in SemOpenAlex for { <https://semopenalex.org/work/W2619474312> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2619474312 endingPage "95" @default.
- W2619474312 startingPage "84" @default.
- W2619474312 abstract "Abstract Total least squares (TLS) method has been widely used in errors-in-variables (EIV) modeling tasks in which both input and output data are disturbed by noises, and adaptive filtering algorithm using TLS has shown significantly superior performance to classical least squares (LS) method in EIV system. The TLS essentially extends the minimum mean square error (MMSE) criterion to EIV model, which, however, may work poorly when noise is non-Gaussian (especially heavy-tailed distribution). Recently, an information theoretic learning (ITL) based minimum total error entropy (MTEE) adaptive filtering algorithm has been proposed, which extends the minimum error entropy (MEE) criterion to EIV model and shows desirable performance in non-Gaussian noise environments. However, due to complex mathematical expression, MTEE is computationally expensive and difficult to carry out the theoretical analysis. In this paper, we propose a new ITL-based criterion called maximum total correntropy (MTC) and develop a gradient-based MTC adaptive filtering algorithm. We analyze theoretically the local stability and steady-state performance of the proposed algorithm. Simulation results confirm the theoretical analysis and show the superior performance of MTC in heavy-tailed noises. Further, simulation comparisons between MTC and MTEE are presented. Compared with the MTEE, the MTC is mathematically more tractable and computationally much simpler while achieving similar or even better performance." @default.
- W2619474312 created "2017-06-05" @default.
- W2619474312 creator A5000740943 @default.
- W2619474312 creator A5020093525 @default.
- W2619474312 creator A5077852542 @default.
- W2619474312 creator A5086529957 @default.
- W2619474312 date "2017-12-01" @default.
- W2619474312 modified "2023-10-17" @default.
- W2619474312 title "Maximum total correntropy adaptive filtering against heavy-tailed noises" @default.
- W2619474312 cites W1701760339 @default.
- W2619474312 cites W1758799351 @default.
- W2619474312 cites W1980907873 @default.
- W2619474312 cites W1982862833 @default.
- W2619474312 cites W1996773351 @default.
- W2619474312 cites W2007336860 @default.
- W2619474312 cites W2008229822 @default.
- W2619474312 cites W2008775992 @default.
- W2619474312 cites W2010535094 @default.
- W2619474312 cites W2015881065 @default.
- W2619474312 cites W2019034316 @default.
- W2619474312 cites W2026581470 @default.
- W2619474312 cites W2088622335 @default.
- W2619474312 cites W2094358944 @default.
- W2619474312 cites W2096915734 @default.
- W2619474312 cites W2097521973 @default.
- W2619474312 cites W2113713615 @default.
- W2619474312 cites W2124572691 @default.
- W2619474312 cites W2130346654 @default.
- W2619474312 cites W2135160607 @default.
- W2619474312 cites W2138668867 @default.
- W2619474312 cites W2330981327 @default.
- W2619474312 cites W2403797236 @default.
- W2619474312 cites W2963134661 @default.
- W2619474312 cites W3024853581 @default.
- W2619474312 doi "https://doi.org/10.1016/j.sigpro.2017.05.029" @default.
- W2619474312 hasPublicationYear "2017" @default.
- W2619474312 type Work @default.
- W2619474312 sameAs 2619474312 @default.
- W2619474312 citedByCount "44" @default.
- W2619474312 countsByYear W26194743122017 @default.
- W2619474312 countsByYear W26194743122018 @default.
- W2619474312 countsByYear W26194743122019 @default.
- W2619474312 countsByYear W26194743122020 @default.
- W2619474312 countsByYear W26194743122021 @default.
- W2619474312 countsByYear W26194743122022 @default.
- W2619474312 countsByYear W26194743122023 @default.
- W2619474312 crossrefType "journal-article" @default.
- W2619474312 hasAuthorship W2619474312A5000740943 @default.
- W2619474312 hasAuthorship W2619474312A5020093525 @default.
- W2619474312 hasAuthorship W2619474312A5077852542 @default.
- W2619474312 hasAuthorship W2619474312A5086529957 @default.
- W2619474312 hasConcept C102248274 @default.
- W2619474312 hasConcept C105795698 @default.
- W2619474312 hasConcept C11413529 @default.
- W2619474312 hasConcept C153180895 @default.
- W2619474312 hasConcept C154945302 @default.
- W2619474312 hasConcept C28490314 @default.
- W2619474312 hasConcept C33923547 @default.
- W2619474312 hasConcept C41008148 @default.
- W2619474312 hasConceptScore W2619474312C102248274 @default.
- W2619474312 hasConceptScore W2619474312C105795698 @default.
- W2619474312 hasConceptScore W2619474312C11413529 @default.
- W2619474312 hasConceptScore W2619474312C153180895 @default.
- W2619474312 hasConceptScore W2619474312C154945302 @default.
- W2619474312 hasConceptScore W2619474312C28490314 @default.
- W2619474312 hasConceptScore W2619474312C33923547 @default.
- W2619474312 hasConceptScore W2619474312C41008148 @default.
- W2619474312 hasLocation W26194743121 @default.
- W2619474312 hasOpenAccess W2619474312 @default.
- W2619474312 hasPrimaryLocation W26194743121 @default.
- W2619474312 hasRelatedWork W2043099224 @default.
- W2619474312 hasRelatedWork W2114668360 @default.
- W2619474312 hasRelatedWork W2330407128 @default.
- W2619474312 hasRelatedWork W2368779261 @default.
- W2619474312 hasRelatedWork W2552050053 @default.
- W2619474312 hasRelatedWork W2778699561 @default.
- W2619474312 hasRelatedWork W2794438528 @default.
- W2619474312 hasRelatedWork W2893763841 @default.
- W2619474312 hasRelatedWork W3037784022 @default.
- W2619474312 hasRelatedWork W4229963900 @default.
- W2619474312 hasVolume "141" @default.
- W2619474312 isParatext "false" @default.
- W2619474312 isRetracted "false" @default.
- W2619474312 magId "2619474312" @default.
- W2619474312 workType "article" @default.