Matches in SemOpenAlex for { <https://semopenalex.org/work/W2619936917> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2619936917 abstract "The definition of vectors of dependent random probability measures is a topic of interest in Bayesian nonparametrics. They represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. Our first contribution is the introduction of novel multivariate vectors of two-parameter Poisson-Dirichlet process. The dependence is induced by applying a L´evy copula to the marginal L´evy intensities. Our attention particularly focuses on the derivation of the Laplace functional transform and the analytical expression of the Exchangeable Partition Probability function (EPPF). Their knowledge allows us to gain some insight on the dependence structure of the priors defined. The second part of the thesis deals with the definition of Bayesian nonparametric priors through the class of species sampling models. In particular, we focus on the novel Beta-GOS model introduced by Airoldi, Costa, et al. (2014). Our second contribution is the modification of the Beta-GOS model with the motivation to accommodate both temporal and spatial correlations that exist in many applications. We then apply the modified model to simulated fMRI data and display the results. Finally, we aim to give contribution to another popular area of nonparametric computational methods in Bayesian inference: Approximate Bayesian Computations (ABC), by providing a new sampler BCbl. It combines the idea of standard ABC and bootstrap likelihood and allows to avoid the choice of ABC parameters. Our work is actually inspired by a recent algorithm BCel proposed by Mengersen, Pudlo and Robert (2013) that uses the well-established empirical likelihood approximation. However, to ensure that the empirical likelihood converges to the true likelihood, it requires a very careful choice of the constraints. This choice is not clear in many cases. On the other hand, the bootstrap likelihood is an automatic procedure, with only a few trivial parameters to specify. The advantages of our algorithm BCbl are illustrated with several examples." @default.
- W2619936917 created "2017-06-05" @default.
- W2619936917 creator A5043684531 @default.
- W2619936917 date "2015-01-01" @default.
- W2619936917 modified "2023-09-27" @default.
- W2619936917 title "Flexible Bayesian Nonparametric Priors and Bayesian Computational Methods" @default.
- W2619936917 hasPublicationYear "2015" @default.
- W2619936917 type Work @default.
- W2619936917 sameAs 2619936917 @default.
- W2619936917 citedByCount "0" @default.
- W2619936917 crossrefType "journal-article" @default.
- W2619936917 hasAuthorship W2619936917A5043684531 @default.
- W2619936917 hasConcept C102366305 @default.
- W2619936917 hasConcept C105795698 @default.
- W2619936917 hasConcept C107673813 @default.
- W2619936917 hasConcept C11413529 @default.
- W2619936917 hasConcept C134306372 @default.
- W2619936917 hasConcept C154945302 @default.
- W2619936917 hasConcept C160234255 @default.
- W2619936917 hasConcept C169214877 @default.
- W2619936917 hasConcept C177769412 @default.
- W2619936917 hasConcept C182310444 @default.
- W2619936917 hasConcept C2781280628 @default.
- W2619936917 hasConcept C33923547 @default.
- W2619936917 hasConcept C41008148 @default.
- W2619936917 hasConcept C95923904 @default.
- W2619936917 hasConceptScore W2619936917C102366305 @default.
- W2619936917 hasConceptScore W2619936917C105795698 @default.
- W2619936917 hasConceptScore W2619936917C107673813 @default.
- W2619936917 hasConceptScore W2619936917C11413529 @default.
- W2619936917 hasConceptScore W2619936917C134306372 @default.
- W2619936917 hasConceptScore W2619936917C154945302 @default.
- W2619936917 hasConceptScore W2619936917C160234255 @default.
- W2619936917 hasConceptScore W2619936917C169214877 @default.
- W2619936917 hasConceptScore W2619936917C177769412 @default.
- W2619936917 hasConceptScore W2619936917C182310444 @default.
- W2619936917 hasConceptScore W2619936917C2781280628 @default.
- W2619936917 hasConceptScore W2619936917C33923547 @default.
- W2619936917 hasConceptScore W2619936917C41008148 @default.
- W2619936917 hasConceptScore W2619936917C95923904 @default.
- W2619936917 hasLocation W26199369171 @default.
- W2619936917 hasOpenAccess W2619936917 @default.
- W2619936917 hasPrimaryLocation W26199369171 @default.
- W2619936917 hasRelatedWork W1596586957 @default.
- W2619936917 hasRelatedWork W1788616518 @default.
- W2619936917 hasRelatedWork W2136097307 @default.
- W2619936917 hasRelatedWork W2417554456 @default.
- W2619936917 hasRelatedWork W2616054778 @default.
- W2619936917 hasRelatedWork W2739217148 @default.
- W2619936917 hasRelatedWork W2757830207 @default.
- W2619936917 hasRelatedWork W2792925550 @default.
- W2619936917 hasRelatedWork W2912522727 @default.
- W2619936917 hasRelatedWork W2912819213 @default.
- W2619936917 hasRelatedWork W2950223827 @default.
- W2619936917 hasRelatedWork W2950731521 @default.
- W2619936917 hasRelatedWork W2953248525 @default.
- W2619936917 hasRelatedWork W2963818813 @default.
- W2619936917 hasRelatedWork W2978753741 @default.
- W2619936917 hasRelatedWork W3101948118 @default.
- W2619936917 hasRelatedWork W3105008132 @default.
- W2619936917 hasRelatedWork W3197724523 @default.
- W2619936917 hasRelatedWork W599376124 @default.
- W2619936917 hasRelatedWork W1557692126 @default.
- W2619936917 isParatext "false" @default.
- W2619936917 isRetracted "false" @default.
- W2619936917 magId "2619936917" @default.
- W2619936917 workType "article" @default.