Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620081215> ?p ?o ?g. }
- W2620081215 abstract "In order to develop an efficient computer-aided diagnosis system for detecting left-sided and right-sided sensorineural hearing loss, we used artificial intelligence in this study. First, 49 subjects were enrolled by magnetic resonance imaging scans. Second, the discrete wavelet packet entropy (DWPE) was utilized to extract global texture features from brain images. Third, single-hidden layer neural network (SLNN) was used as the classifier with training algorithm of adaptive learning-rate back propagation (ALBP). The 10 times of 5-fold cross validation demonstrated our proposed method yielded an overall accuracy of 95.31%, higher than standard back propagation method with accuracy of 87.14%. Besides, our method also outperforms the “FRFT + PCA (Yang, 2016)”, “WE + DT (Kale, 2013)”, and “WE + MRF (Vasta 2016)”. In closing, our method is efficient." @default.
- W2620081215 created "2017-06-05" @default.
- W2620081215 creator A5007987858 @default.
- W2620081215 creator A5016539834 @default.
- W2620081215 creator A5018764924 @default.
- W2620081215 creator A5037226725 @default.
- W2620081215 creator A5048826252 @default.
- W2620081215 creator A5053886291 @default.
- W2620081215 creator A5090965728 @default.
- W2620081215 date "2017-01-01" @default.
- W2620081215 modified "2023-09-27" @default.
- W2620081215 title "Hearing Loss Detection in Medical Multimedia Data by Discrete Wavelet Packet Entropy and Single-Hidden Layer Neural Network Trained by Adaptive Learning-Rate Back Propagation" @default.
- W2620081215 cites W1475705016 @default.
- W2620081215 cites W1590890893 @default.
- W2620081215 cites W1933512202 @default.
- W2620081215 cites W1988745517 @default.
- W2620081215 cites W1993506458 @default.
- W2620081215 cites W2014802425 @default.
- W2620081215 cites W2045376241 @default.
- W2620081215 cites W2053573003 @default.
- W2620081215 cites W2063754448 @default.
- W2620081215 cites W2083386133 @default.
- W2620081215 cites W2094854764 @default.
- W2620081215 cites W2175649320 @default.
- W2620081215 cites W2185967267 @default.
- W2620081215 cites W2193556153 @default.
- W2620081215 cites W2195165000 @default.
- W2620081215 cites W2207894202 @default.
- W2620081215 cites W2262905421 @default.
- W2620081215 cites W2291613166 @default.
- W2620081215 cites W2304245051 @default.
- W2620081215 cites W2318168293 @default.
- W2620081215 cites W2320901998 @default.
- W2620081215 cites W2331803192 @default.
- W2620081215 cites W2343652693 @default.
- W2620081215 cites W2344207873 @default.
- W2620081215 cites W2396975453 @default.
- W2620081215 cites W2400559871 @default.
- W2620081215 cites W2409206932 @default.
- W2620081215 cites W2411480122 @default.
- W2620081215 cites W2413943978 @default.
- W2620081215 cites W2416944762 @default.
- W2620081215 cites W2509876630 @default.
- W2620081215 cites W2534373732 @default.
- W2620081215 cites W2540130004 @default.
- W2620081215 cites W2544571118 @default.
- W2620081215 cites W2545046665 @default.
- W2620081215 cites W2553647727 @default.
- W2620081215 cites W2554211866 @default.
- W2620081215 cites W2556239502 @default.
- W2620081215 cites W2556247010 @default.
- W2620081215 cites W2558107930 @default.
- W2620081215 cites W2595499435 @default.
- W2620081215 cites W783608400 @default.
- W2620081215 doi "https://doi.org/10.1007/978-3-319-59081-3_63" @default.
- W2620081215 hasPublicationYear "2017" @default.
- W2620081215 type Work @default.
- W2620081215 sameAs 2620081215 @default.
- W2620081215 citedByCount "6" @default.
- W2620081215 countsByYear W26200812152017 @default.
- W2620081215 countsByYear W26200812152018 @default.
- W2620081215 countsByYear W26200812152020 @default.
- W2620081215 countsByYear W26200812152021 @default.
- W2620081215 crossrefType "book-chapter" @default.
- W2620081215 hasAuthorship W2620081215A5007987858 @default.
- W2620081215 hasAuthorship W2620081215A5016539834 @default.
- W2620081215 hasAuthorship W2620081215A5018764924 @default.
- W2620081215 hasAuthorship W2620081215A5037226725 @default.
- W2620081215 hasAuthorship W2620081215A5048826252 @default.
- W2620081215 hasAuthorship W2620081215A5053886291 @default.
- W2620081215 hasAuthorship W2620081215A5090965728 @default.
- W2620081215 hasConcept C106301342 @default.
- W2620081215 hasConcept C121332964 @default.
- W2620081215 hasConcept C153180895 @default.
- W2620081215 hasConcept C154945302 @default.
- W2620081215 hasConcept C155032097 @default.
- W2620081215 hasConcept C158379750 @default.
- W2620081215 hasConcept C28490314 @default.
- W2620081215 hasConcept C31258907 @default.
- W2620081215 hasConcept C41008148 @default.
- W2620081215 hasConcept C47432892 @default.
- W2620081215 hasConcept C50644808 @default.
- W2620081215 hasConcept C62520636 @default.
- W2620081215 hasConcept C95623464 @default.
- W2620081215 hasConceptScore W2620081215C106301342 @default.
- W2620081215 hasConceptScore W2620081215C121332964 @default.
- W2620081215 hasConceptScore W2620081215C153180895 @default.
- W2620081215 hasConceptScore W2620081215C154945302 @default.
- W2620081215 hasConceptScore W2620081215C155032097 @default.
- W2620081215 hasConceptScore W2620081215C158379750 @default.
- W2620081215 hasConceptScore W2620081215C28490314 @default.
- W2620081215 hasConceptScore W2620081215C31258907 @default.
- W2620081215 hasConceptScore W2620081215C41008148 @default.
- W2620081215 hasConceptScore W2620081215C47432892 @default.
- W2620081215 hasConceptScore W2620081215C50644808 @default.
- W2620081215 hasConceptScore W2620081215C62520636 @default.
- W2620081215 hasConceptScore W2620081215C95623464 @default.
- W2620081215 hasLocation W26200812151 @default.
- W2620081215 hasOpenAccess W2620081215 @default.
- W2620081215 hasPrimaryLocation W26200812151 @default.