Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620199441> ?p ?o ?g. }
- W2620199441 endingPage "96" @default.
- W2620199441 startingPage "81" @default.
- W2620199441 abstract "In arterial spin labeling (ASL) a perfusion weighted image is achieved by subtracting a label image from a control image. This perfusion weighted image has an intrinsically low signal to noise ratio and numerous measurements are required to achieve reliable image quality, especially at higher spatial resolutions. To overcome this limitation various denoising approaches have been published using the perfusion weighted image as input for denoising. In this study we propose a new spatio-temporal filtering approach based on total generalized variation (TGV) regularization which exploits the inherent information of control and label pairs simultaneously. In this way, the temporal and spatial similarities of all images are used to jointly denoise the control and label images. To assess the effect of denoising, virtual ground truth data were produced at different SNR levels. Furthermore, high-resolution in-vivo pulsed ASL data sets were acquired and processed. The results show improved image quality, quantitative accuracy and robustness against outliers compared to seven state of the art denoising approaches." @default.
- W2620199441 created "2017-06-05" @default.
- W2620199441 creator A5026277785 @default.
- W2620199441 creator A5029108647 @default.
- W2620199441 creator A5040187773 @default.
- W2620199441 creator A5060778033 @default.
- W2620199441 creator A5081419273 @default.
- W2620199441 creator A5091587293 @default.
- W2620199441 date "2017-08-01" @default.
- W2620199441 modified "2023-09-26" @default.
- W2620199441 title "Spatio-temporal TGV denoising for ASL perfusion imaging" @default.
- W2620199441 cites W14790898 @default.
- W2620199441 cites W1570750840 @default.
- W2620199441 cites W1841182567 @default.
- W2620199441 cites W1939164019 @default.
- W2620199441 cites W1952343562 @default.
- W2620199441 cites W1964013801 @default.
- W2620199441 cites W1971057552 @default.
- W2620199441 cites W1973364640 @default.
- W2620199441 cites W1976099054 @default.
- W2620199441 cites W1986938753 @default.
- W2620199441 cites W2000594266 @default.
- W2620199441 cites W2002054942 @default.
- W2620199441 cites W2005305968 @default.
- W2620199441 cites W2007543006 @default.
- W2620199441 cites W2007734075 @default.
- W2620199441 cites W2015575582 @default.
- W2620199441 cites W2029296465 @default.
- W2620199441 cites W2040032797 @default.
- W2620199441 cites W2041586226 @default.
- W2620199441 cites W2056370875 @default.
- W2620199441 cites W2061704145 @default.
- W2620199441 cites W2064818171 @default.
- W2620199441 cites W2076935115 @default.
- W2620199441 cites W2077466520 @default.
- W2620199441 cites W2083749822 @default.
- W2620199441 cites W2084757775 @default.
- W2620199441 cites W2090331981 @default.
- W2620199441 cites W2092663520 @default.
- W2620199441 cites W2103559027 @default.
- W2620199441 cites W2106072096 @default.
- W2620199441 cites W2113030459 @default.
- W2620199441 cites W2115706991 @default.
- W2620199441 cites W2115778039 @default.
- W2620199441 cites W2116641010 @default.
- W2620199441 cites W2118403710 @default.
- W2620199441 cites W2120206316 @default.
- W2620199441 cites W2125583129 @default.
- W2620199441 cites W2125587122 @default.
- W2620199441 cites W2130010412 @default.
- W2620199441 cites W2133191895 @default.
- W2620199441 cites W2133665775 @default.
- W2620199441 cites W2133930475 @default.
- W2620199441 cites W2134544583 @default.
- W2620199441 cites W2147816079 @default.
- W2620199441 cites W2149881968 @default.
- W2620199441 cites W2149953389 @default.
- W2620199441 cites W2154535553 @default.
- W2620199441 cites W2160056785 @default.
- W2620199441 cites W2162776869 @default.
- W2620199441 cites W2169268292 @default.
- W2620199441 cites W2187517509 @default.
- W2620199441 cites W2314866731 @default.
- W2620199441 cites W2470594653 @default.
- W2620199441 cites W395073195 @default.
- W2620199441 cites W4233867216 @default.
- W2620199441 cites W4237804201 @default.
- W2620199441 doi "https://doi.org/10.1016/j.neuroimage.2017.05.054" @default.
- W2620199441 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28559192" @default.
- W2620199441 hasPublicationYear "2017" @default.
- W2620199441 type Work @default.
- W2620199441 sameAs 2620199441 @default.
- W2620199441 citedByCount "34" @default.
- W2620199441 countsByYear W26201994412018 @default.
- W2620199441 countsByYear W26201994412019 @default.
- W2620199441 countsByYear W26201994412020 @default.
- W2620199441 countsByYear W26201994412021 @default.
- W2620199441 countsByYear W26201994412022 @default.
- W2620199441 countsByYear W26201994412023 @default.
- W2620199441 crossrefType "journal-article" @default.
- W2620199441 hasAuthorship W2620199441A5026277785 @default.
- W2620199441 hasAuthorship W2620199441A5029108647 @default.
- W2620199441 hasAuthorship W2620199441A5040187773 @default.
- W2620199441 hasAuthorship W2620199441A5060778033 @default.
- W2620199441 hasAuthorship W2620199441A5081419273 @default.
- W2620199441 hasAuthorship W2620199441A5091587293 @default.
- W2620199441 hasConcept C101453961 @default.
- W2620199441 hasConcept C104317684 @default.
- W2620199441 hasConcept C115961682 @default.
- W2620199441 hasConcept C146849305 @default.
- W2620199441 hasConcept C153180895 @default.
- W2620199441 hasConcept C154945302 @default.
- W2620199441 hasConcept C163294075 @default.
- W2620199441 hasConcept C185592680 @default.
- W2620199441 hasConcept C205372480 @default.
- W2620199441 hasConcept C207282899 @default.
- W2620199441 hasConcept C2776135515 @default.
- W2620199441 hasConcept C2983327147 @default.