Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620222734> ?p ?o ?g. }
- W2620222734 endingPage "306" @default.
- W2620222734 startingPage "280" @default.
- W2620222734 abstract "The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4–4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = −6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4–0.5 GPa (equivalent to 34–42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the observed mineralogy throughout the sequence with progressive crystallization. The Ti/Al ratios in the clinopyroxenes are consistent with initial crystallization occurring at these depths followed by polybaric crystallization as the parent magma ascended to the surface. The REE abundances in the clinopyroxenes and maskelynite are consistent with progressive crystallization in a closed system. The new results for NWA 856 are combined with other shergottite data and are compared to mixing and assimilation and fractional crystallization (AFC) models using depleted shergottite magmas and ancient Martian crust as end-members. The models indicate that the range of REE abundances and ratios, when taken in isolation, can be successfully explained for all shergottites by crustal contamination. However, no successful crustal contamination model can explain the restricted εNdI of −6.8 ± 0.2 over the wide range of Mg# (0.65–0.25), and corresponding trace element variations from enriched shergottites to depleted shergottites. The findings indicate that the origin of the long-term ITE-enriched signature in enriched shergottites and the geochemical variability seen in shergottites is not a result of crustal contamination but instead reflects ancient mantle heterogeneity." @default.
- W2620222734 created "2017-06-05" @default.
- W2620222734 creator A5022283727 @default.
- W2620222734 creator A5041566019 @default.
- W2620222734 creator A5046820682 @default.
- W2620222734 creator A5049897917 @default.
- W2620222734 date "2017-08-01" @default.
- W2620222734 modified "2023-09-30" @default.
- W2620222734 title "Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856" @default.
- W2620222734 cites W1568723416 @default.
- W2620222734 cites W1967230238 @default.
- W2620222734 cites W1968731999 @default.
- W2620222734 cites W1969859799 @default.
- W2620222734 cites W1971513400 @default.
- W2620222734 cites W1973363072 @default.
- W2620222734 cites W1977580902 @default.
- W2620222734 cites W1977643290 @default.
- W2620222734 cites W1981353386 @default.
- W2620222734 cites W1983049666 @default.
- W2620222734 cites W1985341193 @default.
- W2620222734 cites W1986242722 @default.
- W2620222734 cites W1988633302 @default.
- W2620222734 cites W1990823670 @default.
- W2620222734 cites W1994332455 @default.
- W2620222734 cites W1994460473 @default.
- W2620222734 cites W1999929652 @default.
- W2620222734 cites W2010033778 @default.
- W2620222734 cites W2013761444 @default.
- W2620222734 cites W2016082559 @default.
- W2620222734 cites W2018801673 @default.
- W2620222734 cites W2023445761 @default.
- W2620222734 cites W2024575502 @default.
- W2620222734 cites W2025356609 @default.
- W2620222734 cites W2030051630 @default.
- W2620222734 cites W2031891762 @default.
- W2620222734 cites W2032660613 @default.
- W2620222734 cites W2032929802 @default.
- W2620222734 cites W2033207301 @default.
- W2620222734 cites W2033620099 @default.
- W2620222734 cites W2033759679 @default.
- W2620222734 cites W2036133757 @default.
- W2620222734 cites W2038814543 @default.
- W2620222734 cites W2038821751 @default.
- W2620222734 cites W2039687637 @default.
- W2620222734 cites W2042692134 @default.
- W2620222734 cites W2043233434 @default.
- W2620222734 cites W2044138916 @default.
- W2620222734 cites W2048176712 @default.
- W2620222734 cites W2048335161 @default.
- W2620222734 cites W2049905979 @default.
- W2620222734 cites W2052524756 @default.
- W2620222734 cites W2056576190 @default.
- W2620222734 cites W2058970470 @default.
- W2620222734 cites W2060405520 @default.
- W2620222734 cites W2065977728 @default.
- W2620222734 cites W2066600867 @default.
- W2620222734 cites W2068226577 @default.
- W2620222734 cites W2072100663 @default.
- W2620222734 cites W2072310385 @default.
- W2620222734 cites W2072375031 @default.
- W2620222734 cites W2077774301 @default.
- W2620222734 cites W2078321309 @default.
- W2620222734 cites W2081320458 @default.
- W2620222734 cites W2081382446 @default.
- W2620222734 cites W2083834813 @default.
- W2620222734 cites W2095442129 @default.
- W2620222734 cites W2098354503 @default.
- W2620222734 cites W2104652753 @default.
- W2620222734 cites W2108126573 @default.
- W2620222734 cites W2108250461 @default.
- W2620222734 cites W2110929391 @default.
- W2620222734 cites W2114057247 @default.
- W2620222734 cites W2117726746 @default.
- W2620222734 cites W2123707638 @default.
- W2620222734 cites W2126105811 @default.
- W2620222734 cites W2129243512 @default.
- W2620222734 cites W2132738826 @default.
- W2620222734 cites W2132951786 @default.
- W2620222734 cites W2135991059 @default.
- W2620222734 cites W2141681791 @default.
- W2620222734 cites W2150081011 @default.
- W2620222734 cites W2152074861 @default.
- W2620222734 cites W2152211844 @default.
- W2620222734 cites W2162677030 @default.
- W2620222734 cites W2181406638 @default.
- W2620222734 cites W2213342963 @default.
- W2620222734 cites W2295317177 @default.
- W2620222734 cites W2318888853 @default.
- W2620222734 cites W2347150996 @default.
- W2620222734 cites W2506045308 @default.
- W2620222734 cites W2585956466 @default.
- W2620222734 doi "https://doi.org/10.1016/j.gca.2017.05.032" @default.
- W2620222734 hasPublicationYear "2017" @default.
- W2620222734 type Work @default.
- W2620222734 sameAs 2620222734 @default.
- W2620222734 citedByCount "21" @default.
- W2620222734 countsByYear W26202227342017 @default.
- W2620222734 countsByYear W26202227342018 @default.