Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620341102> ?p ?o ?g. }
- W2620341102 endingPage "121" @default.
- W2620341102 startingPage "111" @default.
- W2620341102 abstract "A new sample preparation method based on liquid–liquid–liquid extraction combined with dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection has been reported for the extraction/preconcentration and determination of trace levels of twelve pesticide residues from different samples with high content of solids without filtration. This method consists of a three–phase system including an aqueous phase (sample solution), acetonitrile, and hexane. The extraction mechanism is based on different affinities of the substances from the sample matrices towards each of the involved phase, which provides a high selectivity to the process. In other words, interfering hydrophobic compounds are transferred into hexane and will not be present in the final extract. Furthermore, ionic and polar compounds are retained in the aqueous phase. Therefore, only semi–polar compounds such as the studied pesticides are extracted into acetonitrile. In this method, a homogeneous solution of the aqueous phase and acetonitrile (a water–soluble extraction solvent) forms two clearly separated phases in the presence of sodium sulfate (as a phase separation agent) and simultaneously the analytes are extracted into the fine droplets of the acetonitrile collected on the surface of the aqueous phase. To achieve high enrichment factors, the acetonitrile phase is mixed with 1,2–dibromoethane (as a preconcentration solvent) at µL–level to perform the following dispersive liquid–liquid microextraction procedure. Several parameters that can affect extraction efficiency including kind and volume of extraction solvent, type and concentration of phase separation agent, hexane volume, kind of preconcentration solvent, and ionic strength were studied and optimized. Under the optimal conditions, extraction recoveries were obtained in the range of 53–93% and the calibration curves were linear in wide ranges with correlation coefficients ≥ 0.9983. Intra– (n = 6) and inter–day (n=5) precisions of the method were satisfactory with relative standard deviations less than or equal to 7% (at two concentrations of 10 and 50 µg L−1 of each analyte). Moreover, the detection limits and enrichment factors of the target analytes were obtained in the ranges of 0.43–1.2 µg L−1 and 264–464, respectively. Finally, the proposed method was applied on different fruit and vegetable samples and diazinon was determined in apple sample at a concentration of 0.030 µg g–1." @default.
- W2620341102 created "2017-06-05" @default.
- W2620341102 creator A5009256824 @default.
- W2620341102 creator A5019611754 @default.
- W2620341102 date "2017-11-01" @default.
- W2620341102 modified "2023-10-07" @default.
- W2620341102 title "Development of a new sample preparation method based on liquid–liquid–liquid extraction combined with dispersive liquid–liquid microextraction and its application on unfiltered samples containing high content of solids" @default.
- W2620341102 cites W1964290729 @default.
- W2620341102 cites W1967069904 @default.
- W2620341102 cites W1969331110 @default.
- W2620341102 cites W1974295213 @default.
- W2620341102 cites W1974354050 @default.
- W2620341102 cites W1974476408 @default.
- W2620341102 cites W1975108611 @default.
- W2620341102 cites W1977748844 @default.
- W2620341102 cites W1984129955 @default.
- W2620341102 cites W1985961894 @default.
- W2620341102 cites W1989098515 @default.
- W2620341102 cites W1991380935 @default.
- W2620341102 cites W1995714425 @default.
- W2620341102 cites W2001473672 @default.
- W2620341102 cites W2011408099 @default.
- W2620341102 cites W2017734752 @default.
- W2620341102 cites W2018901079 @default.
- W2620341102 cites W2019789600 @default.
- W2620341102 cites W2020419859 @default.
- W2620341102 cites W2024855876 @default.
- W2620341102 cites W2025573431 @default.
- W2620341102 cites W2025793322 @default.
- W2620341102 cites W2027266251 @default.
- W2620341102 cites W2029111586 @default.
- W2620341102 cites W2032015425 @default.
- W2620341102 cites W2041397017 @default.
- W2620341102 cites W2043149424 @default.
- W2620341102 cites W2045815243 @default.
- W2620341102 cites W2051096022 @default.
- W2620341102 cites W2056724937 @default.
- W2620341102 cites W2060711298 @default.
- W2620341102 cites W2060998868 @default.
- W2620341102 cites W2063210597 @default.
- W2620341102 cites W2068083701 @default.
- W2620341102 cites W2075689701 @default.
- W2620341102 cites W2081774068 @default.
- W2620341102 cites W2085695982 @default.
- W2620341102 cites W2087512396 @default.
- W2620341102 cites W2093010631 @default.
- W2620341102 cites W2104177120 @default.
- W2620341102 cites W2120998420 @default.
- W2620341102 cites W2131840634 @default.
- W2620341102 cites W2168351478 @default.
- W2620341102 cites W2460802663 @default.
- W2620341102 cites W2469720858 @default.
- W2620341102 doi "https://doi.org/10.1016/j.talanta.2017.05.084" @default.
- W2620341102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28738556" @default.
- W2620341102 hasPublicationYear "2017" @default.
- W2620341102 type Work @default.
- W2620341102 sameAs 2620341102 @default.
- W2620341102 citedByCount "23" @default.
- W2620341102 countsByYear W26203411022018 @default.
- W2620341102 countsByYear W26203411022019 @default.
- W2620341102 countsByYear W26203411022020 @default.
- W2620341102 countsByYear W26203411022021 @default.
- W2620341102 countsByYear W26203411022022 @default.
- W2620341102 countsByYear W26203411022023 @default.
- W2620341102 crossrefType "journal-article" @default.
- W2620341102 hasAuthorship W2620341102A5009256824 @default.
- W2620341102 hasAuthorship W2620341102A5019611754 @default.
- W2620341102 hasConcept C149556010 @default.
- W2620341102 hasConcept C154881586 @default.
- W2620341102 hasConcept C161790260 @default.
- W2620341102 hasConcept C178790620 @default.
- W2620341102 hasConcept C184651966 @default.
- W2620341102 hasConcept C185592680 @default.
- W2620341102 hasConcept C2776108993 @default.
- W2620341102 hasConcept C2777077568 @default.
- W2620341102 hasConcept C2777463227 @default.
- W2620341102 hasConcept C2778576202 @default.
- W2620341102 hasConcept C2780471494 @default.
- W2620341102 hasConcept C43617362 @default.
- W2620341102 hasConcept C44280652 @default.
- W2620341102 hasConcept C4725764 @default.
- W2620341102 hasConceptScore W2620341102C149556010 @default.
- W2620341102 hasConceptScore W2620341102C154881586 @default.
- W2620341102 hasConceptScore W2620341102C161790260 @default.
- W2620341102 hasConceptScore W2620341102C178790620 @default.
- W2620341102 hasConceptScore W2620341102C184651966 @default.
- W2620341102 hasConceptScore W2620341102C185592680 @default.
- W2620341102 hasConceptScore W2620341102C2776108993 @default.
- W2620341102 hasConceptScore W2620341102C2777077568 @default.
- W2620341102 hasConceptScore W2620341102C2777463227 @default.
- W2620341102 hasConceptScore W2620341102C2778576202 @default.
- W2620341102 hasConceptScore W2620341102C2780471494 @default.
- W2620341102 hasConceptScore W2620341102C43617362 @default.
- W2620341102 hasConceptScore W2620341102C44280652 @default.
- W2620341102 hasConceptScore W2620341102C4725764 @default.
- W2620341102 hasFunder F4320324703 @default.
- W2620341102 hasLocation W26203411021 @default.
- W2620341102 hasLocation W26203411022 @default.