Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620595718> ?p ?o ?g. }
- W2620595718 endingPage "34" @default.
- W2620595718 startingPage "24" @default.
- W2620595718 abstract "Abstract In this study, kernel-based extreme learning machine (K-ELM) and artificial neural network (ANN) models were developed in order to predict the conditions of an alkaline-catalysed transesterification process. The reliability of these models was assessed and compared based on the coefficient of determination (R2), root mean squared error (RSME), mean average percent error (MAPE) and relative percent deviation (RPD). The K-ELM model had higher R2 (0.991) and lower RSME, MAPE and RPD (0.688, 0.388 and 0.380) compared to the ANN model (0.984, 0.913, 0.640 and 0.634). Based on these results, the K-ELM model is a more reliable prediction model and it was integrated with ant colony optimization (ACO) in order to achieve the highest Ceiba pentandra methyl ester yield. The optimum molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed predicted by the K-ELM model integrated with ACO was 10:1, 1 %wt, 60 °C, 108 min and 1100 rpm, respectively. The Ceiba pentandra methyl ester yield attained under these optimum conditions was 99.80%. This novel integrated model provides insight on the effect of parameters investigated on the methyl ester yield, which may be useful for industries involved in biodiesel production." @default.
- W2620595718 created "2017-06-09" @default.
- W2620595718 creator A5003830247 @default.
- W2620595718 creator A5005529250 @default.
- W2620595718 creator A5014794039 @default.
- W2620595718 creator A5022744263 @default.
- W2620595718 creator A5039560326 @default.
- W2620595718 creator A5085989233 @default.
- W2620595718 date "2017-09-01" @default.
- W2620595718 modified "2023-10-16" @default.
- W2620595718 title "Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks" @default.
- W2620595718 cites W1910994740 @default.
- W2620595718 cites W1965667065 @default.
- W2620595718 cites W1973485165 @default.
- W2620595718 cites W1977128517 @default.
- W2620595718 cites W1983028007 @default.
- W2620595718 cites W1985068142 @default.
- W2620595718 cites W1990166711 @default.
- W2620595718 cites W1993397413 @default.
- W2620595718 cites W1993717606 @default.
- W2620595718 cites W2002429273 @default.
- W2620595718 cites W2002694644 @default.
- W2620595718 cites W2026131661 @default.
- W2620595718 cites W2041103920 @default.
- W2620595718 cites W2045749135 @default.
- W2620595718 cites W2046620777 @default.
- W2620595718 cites W2048191941 @default.
- W2620595718 cites W2063143152 @default.
- W2620595718 cites W2063977536 @default.
- W2620595718 cites W2072318027 @default.
- W2620595718 cites W2087267299 @default.
- W2620595718 cites W2088036356 @default.
- W2620595718 cites W2101229327 @default.
- W2620595718 cites W2106527482 @default.
- W2620595718 cites W2107941094 @default.
- W2620595718 cites W2118044993 @default.
- W2620595718 cites W2122282981 @default.
- W2620595718 cites W2124642471 @default.
- W2620595718 cites W2154929945 @default.
- W2620595718 cites W2166730937 @default.
- W2620595718 cites W2166828762 @default.
- W2620595718 cites W2171147400 @default.
- W2620595718 cites W2219589795 @default.
- W2620595718 cites W2300351456 @default.
- W2620595718 cites W2525800898 @default.
- W2620595718 cites W2561585549 @default.
- W2620595718 doi "https://doi.org/10.1016/j.energy.2017.05.196" @default.
- W2620595718 hasPublicationYear "2017" @default.
- W2620595718 type Work @default.
- W2620595718 sameAs 2620595718 @default.
- W2620595718 citedByCount "85" @default.
- W2620595718 countsByYear W26205957182018 @default.
- W2620595718 countsByYear W26205957182019 @default.
- W2620595718 countsByYear W26205957182020 @default.
- W2620595718 countsByYear W26205957182021 @default.
- W2620595718 countsByYear W26205957182022 @default.
- W2620595718 countsByYear W26205957182023 @default.
- W2620595718 crossrefType "journal-article" @default.
- W2620595718 hasAuthorship W2620595718A5003830247 @default.
- W2620595718 hasAuthorship W2620595718A5005529250 @default.
- W2620595718 hasAuthorship W2620595718A5014794039 @default.
- W2620595718 hasAuthorship W2620595718A5022744263 @default.
- W2620595718 hasAuthorship W2620595718A5039560326 @default.
- W2620595718 hasAuthorship W2620595718A5085989233 @default.
- W2620595718 hasBestOaLocation W26205957182 @default.
- W2620595718 hasConcept C111919701 @default.
- W2620595718 hasConcept C114614502 @default.
- W2620595718 hasConcept C119857082 @default.
- W2620595718 hasConcept C127413603 @default.
- W2620595718 hasConcept C154945302 @default.
- W2620595718 hasConcept C161790260 @default.
- W2620595718 hasConcept C178790620 @default.
- W2620595718 hasConcept C185592680 @default.
- W2620595718 hasConcept C18903297 @default.
- W2620595718 hasConcept C21880701 @default.
- W2620595718 hasConcept C2777241282 @default.
- W2620595718 hasConcept C2778228072 @default.
- W2620595718 hasConcept C2779607525 @default.
- W2620595718 hasConcept C33923547 @default.
- W2620595718 hasConcept C41008148 @default.
- W2620595718 hasConcept C50644808 @default.
- W2620595718 hasConcept C52896960 @default.
- W2620595718 hasConcept C74193536 @default.
- W2620595718 hasConcept C86803240 @default.
- W2620595718 hasConcept C98045186 @default.
- W2620595718 hasConceptScore W2620595718C111919701 @default.
- W2620595718 hasConceptScore W2620595718C114614502 @default.
- W2620595718 hasConceptScore W2620595718C119857082 @default.
- W2620595718 hasConceptScore W2620595718C127413603 @default.
- W2620595718 hasConceptScore W2620595718C154945302 @default.
- W2620595718 hasConceptScore W2620595718C161790260 @default.
- W2620595718 hasConceptScore W2620595718C178790620 @default.
- W2620595718 hasConceptScore W2620595718C185592680 @default.
- W2620595718 hasConceptScore W2620595718C18903297 @default.
- W2620595718 hasConceptScore W2620595718C21880701 @default.
- W2620595718 hasConceptScore W2620595718C2777241282 @default.
- W2620595718 hasConceptScore W2620595718C2778228072 @default.
- W2620595718 hasConceptScore W2620595718C2779607525 @default.