Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620659144> ?p ?o ?g. }
- W2620659144 abstract "This thesis contributes and provides solutions to the problem of fault diagnosis and estimation from three different perspectives which are i) fault diagnosis of nonlinear systems using nonlinear multiple model approach, ii) inversion-based fault estimation in linear systems, and iii) data-driven fault diagnosis and estimation in linear systems. The above contributions have been demonstrated to the gas turbines as one of the most important engineering systems in the power and aerospace industries. The proposed multiple model approach is essentially a hierarchy of nonlinear Kalman filters utilized as detection filters. A nonlinear mathematical model for a gas turbines is developed and verified. The fault vector is defined using the Gas Path Analysis approach. The nonlinear Kalman filters that correspond to the defined single or concurrent fault modes provide the conditional probabilities associated with each fault mode using the Bayes' law. The current fault mode is then determined based on the maximum probability criteria. The performance of both Extended Kalman Filters (EKF) and Unscented Kalman Filters (UKF) are investigated and compared which demonstrates that the UKF outperforms the EKF for this particular application.The problem of fault estimation is increasingly receiving more attention due to its practical importance. Fault estimation is closely related to the problem of linear systems inversion. This thesis includes two contributions for the stable inversion of non-minimum phase systems. First, a novel methodology is proposed for direct estimation of unknown inputs by using only measurements of either minimum or non-minimum phase systems as well as systems with transmission zeros on the unit circle. A dynamic filter is then identified whose poles coincide with the transmission zeros of the system. A feedback is then introduced to stabilize the above filter dynamics as well as provide an unbiased estimation of the unknown input. The methodology is then applied to the problem of fault estimation and has been shown that the proposed inversion filter is unbiased for certain categories of faults. Second, a solution for unbiased reconstruction of general inputs is proposed. It is based on designing an unknown input observer (UIO) that provides unbiased estimation of the minimum phase states of the system. The reconstructed minimum phase states serve then as inputs for reconstruction of the non-minimum phase states. The reconstruction error for non-minimum phase states exponentially decrease as the estimation delay is increased. Therefore, an almost perfect reconstruction can be achieved by selecting the delay to be sufficiently large. The proposed inversion scheme is then applied to the output-tracking control problem. An important practical challenge is the fact that engineers rarely have a detailed and accurate mathematical model of complex engineering systems such as gas turbines. Consequently, one can find a trend towards data-driven approaches in many disciplines, including fault diagnosis. In this thesis, explicit state-space based fault detection, isolation and estimation filters are proposed that are directly identified from only the system input-output (I/O) measurements and through the system Markov parameters. The proposed procedures do not involve a reduction step and do not require identification of the system extended observability matrix or its left null space. Therefore, the performance of the proposed filters is directly connected to and linearly dependent on the errors in the Markov parameters estimation process. The estimation error dynamics is then derived in terms of the Markov parameters identification errors and directly synthesized from the healthy system I/O data. Consequently, the estimation errors have been effectively compensated for. The proposed data-driven scheme requires the persistently exciting condition for healthy input data which is not practical for certain real life applications and in particular to gas turbine engines. To address this issue, a robust methodology for Markov parameters estimation using frequency response data is developed. Finally, the performance of the proposed data-driven approach is comprehensively evaluated for the fault diagnosis and estimation problems in the gas turbine engines." @default.
- W2620659144 created "2017-06-09" @default.
- W2620659144 creator A5072422115 @default.
- W2620659144 date "2016-10-30" @default.
- W2620659144 modified "2023-09-24" @default.
- W2620659144 title "Fault Diagnosis and Estimation of Dynamical Systems with Application to Gas Turbines" @default.
- W2620659144 cites W108857541 @default.
- W2620659144 cites W1484739396 @default.
- W2620659144 cites W1492971044 @default.
- W2620659144 cites W1581249620 @default.
- W2620659144 cites W1595837842 @default.
- W2620659144 cites W1906684631 @default.
- W2620659144 cites W1963659607 @default.
- W2620659144 cites W1966547590 @default.
- W2620659144 cites W1966863755 @default.
- W2620659144 cites W1971251909 @default.
- W2620659144 cites W1973035496 @default.
- W2620659144 cites W1973696218 @default.
- W2620659144 cites W1983646343 @default.
- W2620659144 cites W1986237384 @default.
- W2620659144 cites W1988548600 @default.
- W2620659144 cites W1991269832 @default.
- W2620659144 cites W1993339782 @default.
- W2620659144 cites W1996175063 @default.
- W2620659144 cites W1997713206 @default.
- W2620659144 cites W2004152965 @default.
- W2620659144 cites W2005969398 @default.
- W2620659144 cites W2006484087 @default.
- W2620659144 cites W2008330154 @default.
- W2620659144 cites W2009072010 @default.
- W2620659144 cites W2013895638 @default.
- W2620659144 cites W2019428117 @default.
- W2620659144 cites W2020806361 @default.
- W2620659144 cites W2024094473 @default.
- W2620659144 cites W2025735965 @default.
- W2620659144 cites W2029866570 @default.
- W2620659144 cites W2033969310 @default.
- W2620659144 cites W2034487019 @default.
- W2620659144 cites W2036073288 @default.
- W2620659144 cites W2036644718 @default.
- W2620659144 cites W2042093426 @default.
- W2620659144 cites W2043039095 @default.
- W2620659144 cites W2043125550 @default.
- W2620659144 cites W2048819743 @default.
- W2620659144 cites W2052980801 @default.
- W2620659144 cites W2054864534 @default.
- W2620659144 cites W2057222345 @default.
- W2620659144 cites W2058205456 @default.
- W2620659144 cites W2064744547 @default.
- W2620659144 cites W2079363366 @default.
- W2620659144 cites W2083514989 @default.
- W2620659144 cites W2088900705 @default.
- W2620659144 cites W2098119504 @default.
- W2620659144 cites W2098196145 @default.
- W2620659144 cites W2100028154 @default.
- W2620659144 cites W2101328308 @default.
- W2620659144 cites W2101623967 @default.
- W2620659144 cites W2102883295 @default.
- W2620659144 cites W2107624385 @default.
- W2620659144 cites W2116349459 @default.
- W2620659144 cites W2117752034 @default.
- W2620659144 cites W2120089326 @default.
- W2620659144 cites W2121761201 @default.
- W2620659144 cites W2131862268 @default.
- W2620659144 cites W2132029223 @default.
- W2620659144 cites W2135663228 @default.
- W2620659144 cites W2147129131 @default.
- W2620659144 cites W2151924755 @default.
- W2620659144 cites W2154043199 @default.
- W2620659144 cites W2157941594 @default.
- W2620659144 cites W2158958729 @default.
- W2620659144 cites W2159806329 @default.
- W2620659144 cites W2160873233 @default.
- W2620659144 cites W2167387893 @default.
- W2620659144 cites W2288947360 @default.
- W2620659144 cites W2295856041 @default.
- W2620659144 cites W2299550941 @default.
- W2620659144 cites W2343977510 @default.
- W2620659144 cites W2344812317 @default.
- W2620659144 cites W2508332253 @default.
- W2620659144 cites W2810411747 @default.
- W2620659144 cites W51986350 @default.
- W2620659144 cites W565798578 @default.
- W2620659144 cites W631706178 @default.
- W2620659144 hasPublicationYear "2016" @default.
- W2620659144 type Work @default.
- W2620659144 sameAs 2620659144 @default.
- W2620659144 citedByCount "0" @default.
- W2620659144 crossrefType "dissertation" @default.
- W2620659144 hasAuthorship W2620659144A5072422115 @default.
- W2620659144 hasConcept C121332964 @default.
- W2620659144 hasConcept C127313418 @default.
- W2620659144 hasConcept C127413603 @default.
- W2620659144 hasConcept C154945302 @default.
- W2620659144 hasConcept C157286648 @default.
- W2620659144 hasConcept C158622935 @default.
- W2620659144 hasConcept C165205528 @default.
- W2620659144 hasConcept C175551986 @default.
- W2620659144 hasConcept C206833254 @default.
- W2620659144 hasConcept C2775924081 @default.