Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620675477> ?p ?o ?g. }
- W2620675477 endingPage "112" @default.
- W2620675477 startingPage "102" @default.
- W2620675477 abstract "Information on the subcellular localization of Gram-negative bacterial proteins is of great significance to study the pathogenesis, drug design and discovery of certain diseases. Protein subcellular localization is an important part of proteomics, while providing new opportunities and challenges for chemometrics. Since the prediction of protein subcellular localization can help to understand their function and the role played by their metabolic processes, a number of protein subcellular localization prediction methods have been developed in recent years. In this paper, we propose a novel method by combining wavelet denoising with support vector machine to predict the subcellular localization of proteins for the first time. Firstly, the features of the protein sequence are extracted by Chou's pseudo amino acid composition (PseAAC), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of the Gram-negative bacterial proteins. Quite promising predictions are obtained using the jackknife test and compared with other predictive methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of protein subcellular localization, and it can be used to predict the other attributes of proteins." @default.
- W2620675477 created "2017-06-09" @default.
- W2620675477 creator A5004366207 @default.
- W2620675477 creator A5022533710 @default.
- W2620675477 creator A5051077337 @default.
- W2620675477 creator A5064548129 @default.
- W2620675477 creator A5075590567 @default.
- W2620675477 creator A5079649458 @default.
- W2620675477 creator A5084476574 @default.
- W2620675477 date "2017-08-01" @default.
- W2620675477 modified "2023-10-09" @default.
- W2620675477 title "Prediction subcellular localization of Gram-negative bacterial proteins by support vector machine using wavelet denoising and Chou's pseudo amino acid composition" @default.
- W2620675477 cites W1485819570 @default.
- W2620675477 cites W1871483105 @default.
- W2620675477 cites W1967696966 @default.
- W2620675477 cites W1975888060 @default.
- W2620675477 cites W1977927254 @default.
- W2620675477 cites W1980128308 @default.
- W2620675477 cites W1980256262 @default.
- W2620675477 cites W1982267716 @default.
- W2620675477 cites W1986104731 @default.
- W2620675477 cites W1990678622 @default.
- W2620675477 cites W1992577925 @default.
- W2620675477 cites W1993846247 @default.
- W2620675477 cites W1993996526 @default.
- W2620675477 cites W1996485006 @default.
- W2620675477 cites W1999151221 @default.
- W2620675477 cites W2000152746 @default.
- W2620675477 cites W2000371303 @default.
- W2620675477 cites W2004224774 @default.
- W2620675477 cites W2006211612 @default.
- W2620675477 cites W2007203285 @default.
- W2620675477 cites W2012352014 @default.
- W2620675477 cites W2021357636 @default.
- W2620675477 cites W2025131366 @default.
- W2620675477 cites W2034070267 @default.
- W2620675477 cites W2036154117 @default.
- W2620675477 cites W2036790151 @default.
- W2620675477 cites W2038681300 @default.
- W2620675477 cites W2048279801 @default.
- W2620675477 cites W2072805285 @default.
- W2620675477 cites W2077919959 @default.
- W2620675477 cites W2082605863 @default.
- W2620675477 cites W2083097837 @default.
- W2620675477 cites W2085809045 @default.
- W2620675477 cites W2094560491 @default.
- W2620675477 cites W2094931538 @default.
- W2620675477 cites W2096117420 @default.
- W2620675477 cites W2102354653 @default.
- W2620675477 cites W2102756331 @default.
- W2620675477 cites W2110659301 @default.
- W2620675477 cites W2120940429 @default.
- W2620675477 cites W2121847038 @default.
- W2620675477 cites W2124306486 @default.
- W2620675477 cites W2125527601 @default.
- W2620675477 cites W2132292391 @default.
- W2620675477 cites W2132984323 @default.
- W2620675477 cites W2133797106 @default.
- W2620675477 cites W2140095548 @default.
- W2620675477 cites W2140855119 @default.
- W2620675477 cites W2145957695 @default.
- W2620675477 cites W2146194630 @default.
- W2620675477 cites W2146842127 @default.
- W2620675477 cites W2152458080 @default.
- W2620675477 cites W2152705149 @default.
- W2620675477 cites W2153635508 @default.
- W2620675477 cites W2156875887 @default.
- W2620675477 cites W2160072419 @default.
- W2620675477 cites W2160979370 @default.
- W2620675477 cites W2163612361 @default.
- W2620675477 cites W2165321759 @default.
- W2620675477 cites W2165928787 @default.
- W2620675477 cites W2198703459 @default.
- W2620675477 cites W2316634055 @default.
- W2620675477 cites W2340054390 @default.
- W2620675477 cites W2421133685 @default.
- W2620675477 cites W2520558288 @default.
- W2620675477 doi "https://doi.org/10.1016/j.chemolab.2017.05.009" @default.
- W2620675477 hasPublicationYear "2017" @default.
- W2620675477 type Work @default.
- W2620675477 sameAs 2620675477 @default.
- W2620675477 citedByCount "48" @default.
- W2620675477 countsByYear W26206754772017 @default.
- W2620675477 countsByYear W26206754772018 @default.
- W2620675477 countsByYear W26206754772019 @default.
- W2620675477 countsByYear W26206754772020 @default.
- W2620675477 countsByYear W26206754772021 @default.
- W2620675477 countsByYear W26206754772022 @default.
- W2620675477 countsByYear W26206754772023 @default.
- W2620675477 crossrefType "journal-article" @default.
- W2620675477 hasAuthorship W2620675477A5004366207 @default.
- W2620675477 hasAuthorship W2620675477A5022533710 @default.
- W2620675477 hasAuthorship W2620675477A5051077337 @default.
- W2620675477 hasAuthorship W2620675477A5064548129 @default.
- W2620675477 hasAuthorship W2620675477A5075590567 @default.
- W2620675477 hasAuthorship W2620675477A5079649458 @default.
- W2620675477 hasAuthorship W2620675477A5084476574 @default.
- W2620675477 hasConcept C10010492 @default.