Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620786961> ?p ?o ?g. }
- W2620786961 endingPage "942" @default.
- W2620786961 startingPage "930" @default.
- W2620786961 abstract "In this contribution, we present a novel polygonal finite element method applied to hyperelastic analysis. For generating polygonal meshes in a bounded period of time, we use the adaptive Delaunay tessellation (ADT) proposed by Constantinu et al. [1 A. Constantinu, P. Steinmann, T. Bobach, G. Farin, and G. Umlauf, The adaptive Delaunay tessellation: A neighborhood covering meshing technique., Comput. Mech., vol. 42, no. 5, pp. 655–669, 2008.[Crossref], [Web of Science ®] , [Google Scholar]]. ADT is an unstructured hybrid tessellation of a scattered point set that minimally covers the proximal space around each point. In this work, we have extended the ADT to nonconvex domains using concepts from constrained Delaunay triangulation (CDT). The proposed method is thus based on a constrained adaptive Delaunay tessellation (CADT) for the discretization of domains into polygonal regions. We involve the metric coordinate (Malsch) method for obtaining the interpolation over convex and nonconvex domains. For the numerical integration of the Galerkin weak form, we resort to classical Gaussian quadrature based on triangles. Numerical examples of two-dimensional hyperelasticity are considered to demonstrate the advantages of the polygonal finite element method." @default.
- W2620786961 created "2017-06-09" @default.
- W2620786961 creator A5003672675 @default.
- W2620786961 creator A5031476162 @default.
- W2620786961 creator A5055353787 @default.
- W2620786961 date "2017-07-26" @default.
- W2620786961 modified "2023-09-27" @default.
- W2620786961 title "Hyperelastic analysis based on a polygonal finite element method" @default.
- W2620786961 cites W1603359849 @default.
- W2620786961 cites W1741864703 @default.
- W2620786961 cites W1883217180 @default.
- W2620786961 cites W1964238980 @default.
- W2620786961 cites W1965738053 @default.
- W2620786961 cites W1969557622 @default.
- W2620786961 cites W1973174730 @default.
- W2620786961 cites W1992923859 @default.
- W2620786961 cites W1993609524 @default.
- W2620786961 cites W1994782948 @default.
- W2620786961 cites W1997071543 @default.
- W2620786961 cites W2001309901 @default.
- W2620786961 cites W2004791619 @default.
- W2620786961 cites W2005893532 @default.
- W2620786961 cites W2007039858 @default.
- W2620786961 cites W2008021403 @default.
- W2620786961 cites W2008747545 @default.
- W2620786961 cites W2008805697 @default.
- W2620786961 cites W2014843742 @default.
- W2620786961 cites W2015810521 @default.
- W2620786961 cites W2016278961 @default.
- W2620786961 cites W2031551749 @default.
- W2620786961 cites W2039401182 @default.
- W2620786961 cites W2045237378 @default.
- W2620786961 cites W2045841791 @default.
- W2620786961 cites W2055384757 @default.
- W2620786961 cites W2058626816 @default.
- W2620786961 cites W2065093065 @default.
- W2620786961 cites W2071720054 @default.
- W2620786961 cites W2075599725 @default.
- W2620786961 cites W2077514472 @default.
- W2620786961 cites W2084993191 @default.
- W2620786961 cites W2089142741 @default.
- W2620786961 cites W2091183786 @default.
- W2620786961 cites W2097158696 @default.
- W2620786961 cites W2099760642 @default.
- W2620786961 cites W2106715384 @default.
- W2620786961 cites W2119475453 @default.
- W2620786961 cites W2128805329 @default.
- W2620786961 cites W2136602144 @default.
- W2620786961 cites W2139218803 @default.
- W2620786961 cites W2146773300 @default.
- W2620786961 cites W2156883076 @default.
- W2620786961 cites W2157252460 @default.
- W2620786961 cites W2164011111 @default.
- W2620786961 cites W2169464027 @default.
- W2620786961 cites W2170976551 @default.
- W2620786961 cites W3099031914 @default.
- W2620786961 cites W3106057804 @default.
- W2620786961 cites W3125923124 @default.
- W2620786961 cites W4233370650 @default.
- W2620786961 cites W85267538 @default.
- W2620786961 doi "https://doi.org/10.1080/15376494.2017.1329463" @default.
- W2620786961 hasPublicationYear "2017" @default.
- W2620786961 type Work @default.
- W2620786961 sameAs 2620786961 @default.
- W2620786961 citedByCount "15" @default.
- W2620786961 countsByYear W26207869612019 @default.
- W2620786961 countsByYear W26207869612020 @default.
- W2620786961 countsByYear W26207869612021 @default.
- W2620786961 countsByYear W26207869612022 @default.
- W2620786961 countsByYear W26207869612023 @default.
- W2620786961 crossrefType "journal-article" @default.
- W2620786961 hasAuthorship W2620786961A5003672675 @default.
- W2620786961 hasAuthorship W2620786961A5031476162 @default.
- W2620786961 hasAuthorship W2620786961A5055353787 @default.
- W2620786961 hasConcept C114614502 @default.
- W2620786961 hasConcept C121332964 @default.
- W2620786961 hasConcept C121684516 @default.
- W2620786961 hasConcept C134306372 @default.
- W2620786961 hasConcept C135628077 @default.
- W2620786961 hasConcept C137800194 @default.
- W2620786961 hasConcept C147370603 @default.
- W2620786961 hasConcept C170589453 @default.
- W2620786961 hasConcept C181145010 @default.
- W2620786961 hasConcept C184720557 @default.
- W2620786961 hasConcept C24881265 @default.
- W2620786961 hasConcept C2524010 @default.
- W2620786961 hasConcept C28826006 @default.
- W2620786961 hasConcept C31487907 @default.
- W2620786961 hasConcept C33923547 @default.
- W2620786961 hasConcept C41008148 @default.
- W2620786961 hasConcept C43817857 @default.
- W2620786961 hasConcept C502989409 @default.
- W2620786961 hasConcept C68010082 @default.
- W2620786961 hasConcept C97355855 @default.
- W2620786961 hasConceptScore W2620786961C114614502 @default.
- W2620786961 hasConceptScore W2620786961C121332964 @default.
- W2620786961 hasConceptScore W2620786961C121684516 @default.
- W2620786961 hasConceptScore W2620786961C134306372 @default.