Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620975421> ?p ?o ?g. }
- W2620975421 abstract "Increasing numbers of 3D models provide a greatopportunity for data-driven shape modeling, analysis andsynthesis. The most critical core technique is to aggregateinformation from model collections to improve reasoningtheir properties and relationships. In this paper, we proposea probabilistic model for traditional Chinese architectures, which encodes the semantic type and hierarchicalrelationships for their basic components. Firstly aprobabilistic hierarchical graph is designed to represent thetypical component structure of Chinese ancient buildings. Secondly, a Bayesian Network is trained from a collection of3D models with consistent labels. Finally, the BayesianNetwork with structure and parameters learned from datacan be used to synthesis and recommend components inapplications. Experimental results show the effective of theproposed method." @default.
- W2620975421 created "2017-06-09" @default.
- W2620975421 creator A5008319802 @default.
- W2620975421 creator A5012313761 @default.
- W2620975421 creator A5021263022 @default.
- W2620975421 creator A5023293408 @default.
- W2620975421 creator A5055770524 @default.
- W2620975421 creator A5070527811 @default.
- W2620975421 date "2016-09-01" @default.
- W2620975421 modified "2023-09-24" @default.
- W2620975421 title "A Probabilistic Model for Traditional Chinese Architecture" @default.
- W2620975421 cites W1126718583 @default.
- W2620975421 cites W1519759736 @default.
- W2620975421 cites W1569512051 @default.
- W2620975421 cites W1608547639 @default.
- W2620975421 cites W1992971572 @default.
- W2620975421 cites W1995830820 @default.
- W2620975421 cites W1995976107 @default.
- W2620975421 cites W2011263905 @default.
- W2620975421 cites W2077678691 @default.
- W2620975421 cites W2088624347 @default.
- W2620975421 cites W2092773680 @default.
- W2620975421 cites W2106723645 @default.
- W2620975421 cites W2108389405 @default.
- W2620975421 cites W2118080926 @default.
- W2620975421 cites W2118503838 @default.
- W2620975421 cites W2153968339 @default.
- W2620975421 cites W2161960196 @default.
- W2620975421 cites W2162559028 @default.
- W2620975421 cites W2216978575 @default.
- W2620975421 cites W2233620176 @default.
- W2620975421 doi "https://doi.org/10.1109/icvrv.2016.75" @default.
- W2620975421 hasPublicationYear "2016" @default.
- W2620975421 type Work @default.
- W2620975421 sameAs 2620975421 @default.
- W2620975421 citedByCount "0" @default.
- W2620975421 crossrefType "proceedings-article" @default.
- W2620975421 hasAuthorship W2620975421A5008319802 @default.
- W2620975421 hasAuthorship W2620975421A5012313761 @default.
- W2620975421 hasAuthorship W2620975421A5021263022 @default.
- W2620975421 hasAuthorship W2620975421A5023293408 @default.
- W2620975421 hasAuthorship W2620975421A5055770524 @default.
- W2620975421 hasAuthorship W2620975421A5070527811 @default.
- W2620975421 hasConcept C114289077 @default.
- W2620975421 hasConcept C119857082 @default.
- W2620975421 hasConcept C121332964 @default.
- W2620975421 hasConcept C123657996 @default.
- W2620975421 hasConcept C124101348 @default.
- W2620975421 hasConcept C132525143 @default.
- W2620975421 hasConcept C142362112 @default.
- W2620975421 hasConcept C153349607 @default.
- W2620975421 hasConcept C154945302 @default.
- W2620975421 hasConcept C168167062 @default.
- W2620975421 hasConcept C2164484 @default.
- W2620975421 hasConcept C33724603 @default.
- W2620975421 hasConcept C41008148 @default.
- W2620975421 hasConcept C49937458 @default.
- W2620975421 hasConcept C67186912 @default.
- W2620975421 hasConcept C76155785 @default.
- W2620975421 hasConcept C77088390 @default.
- W2620975421 hasConcept C80444323 @default.
- W2620975421 hasConcept C97355855 @default.
- W2620975421 hasConceptScore W2620975421C114289077 @default.
- W2620975421 hasConceptScore W2620975421C119857082 @default.
- W2620975421 hasConceptScore W2620975421C121332964 @default.
- W2620975421 hasConceptScore W2620975421C123657996 @default.
- W2620975421 hasConceptScore W2620975421C124101348 @default.
- W2620975421 hasConceptScore W2620975421C132525143 @default.
- W2620975421 hasConceptScore W2620975421C142362112 @default.
- W2620975421 hasConceptScore W2620975421C153349607 @default.
- W2620975421 hasConceptScore W2620975421C154945302 @default.
- W2620975421 hasConceptScore W2620975421C168167062 @default.
- W2620975421 hasConceptScore W2620975421C2164484 @default.
- W2620975421 hasConceptScore W2620975421C33724603 @default.
- W2620975421 hasConceptScore W2620975421C41008148 @default.
- W2620975421 hasConceptScore W2620975421C49937458 @default.
- W2620975421 hasConceptScore W2620975421C67186912 @default.
- W2620975421 hasConceptScore W2620975421C76155785 @default.
- W2620975421 hasConceptScore W2620975421C77088390 @default.
- W2620975421 hasConceptScore W2620975421C80444323 @default.
- W2620975421 hasConceptScore W2620975421C97355855 @default.
- W2620975421 hasLocation W26209754211 @default.
- W2620975421 hasOpenAccess W2620975421 @default.
- W2620975421 hasPrimaryLocation W26209754211 @default.
- W2620975421 hasRelatedWork W1487312514 @default.
- W2620975421 hasRelatedWork W1489114182 @default.
- W2620975421 hasRelatedWork W1489843257 @default.
- W2620975421 hasRelatedWork W1575590225 @default.
- W2620975421 hasRelatedWork W1951389487 @default.
- W2620975421 hasRelatedWork W2027046860 @default.
- W2620975421 hasRelatedWork W2036118208 @default.
- W2620975421 hasRelatedWork W2090672487 @default.
- W2620975421 hasRelatedWork W2100899551 @default.
- W2620975421 hasRelatedWork W2112262601 @default.
- W2620975421 hasRelatedWork W2137437475 @default.
- W2620975421 hasRelatedWork W2141955416 @default.
- W2620975421 hasRelatedWork W2150146414 @default.
- W2620975421 hasRelatedWork W2286668404 @default.
- W2620975421 hasRelatedWork W2359543354 @default.
- W2620975421 hasRelatedWork W2390920812 @default.