Matches in SemOpenAlex for { <https://semopenalex.org/work/W2620979376> ?p ?o ?g. }
- W2620979376 endingPage "91" @default.
- W2620979376 startingPage "80" @default.
- W2620979376 abstract "Proper parameterisation and quantification of model uncertainty are two essential tasks in improvement and assessment of model performance. Bayesian calibration is a method that combines both tasks by quantifying probability distributions for model parameters and outputs. However, the method is rarely applied to complex models because of its high computational demand when used with high-dimensional parameter spaces. We therefore combined Bayesian calibration with sensitivity analysis, using the screening method by Morris (1991), in order to reduce model complexity by fixing parameters to which model output was only weakly sensitive to a nominal value. Further, the robustness of the model with respect to reduction in the number of free parameters were examined according to model discrepancy and output uncertainty. The process-based grassland model BASGRA was examined in the present study on two sites in Norway and in Germany, for two grass species (Phleum pratense and Arrhenatherum elatius). According to this study, a reduction of free model parameters from 66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were consistent across sites (which differed in climate and soil conditions), while model calibration had to be performed separately for each combination of site and species. The output uncertainty decreased slightly, but still covered the field observations of aboveground biomass. Considering the training data, the mean square error for both the 66 and the 45 parameter model was dominated by errors in timing (phase shift), whereas no general pattern was found in errors when using the validation data. Stronger model reduction should be avoided, as the error term increased and output uncertainty was underestimated." @default.
- W2620979376 created "2017-06-09" @default.
- W2620979376 creator A5000605706 @default.
- W2620979376 creator A5009247822 @default.
- W2620979376 creator A5031586592 @default.
- W2620979376 creator A5069966398 @default.
- W2620979376 creator A5072022077 @default.
- W2620979376 creator A5087269965 @default.
- W2620979376 date "2017-09-01" @default.
- W2620979376 modified "2023-10-14" @default.
- W2620979376 title "Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments" @default.
- W2620979376 cites W1973333099 @default.
- W2620979376 cites W1979145518 @default.
- W2620979376 cites W1987259321 @default.
- W2620979376 cites W1987874405 @default.
- W2620979376 cites W1988872612 @default.
- W2620979376 cites W1995737178 @default.
- W2620979376 cites W2006717130 @default.
- W2620979376 cites W2012405649 @default.
- W2620979376 cites W2018120628 @default.
- W2620979376 cites W2023677451 @default.
- W2620979376 cites W2028854559 @default.
- W2620979376 cites W2033521227 @default.
- W2620979376 cites W2041162377 @default.
- W2620979376 cites W2051563170 @default.
- W2620979376 cites W2054152929 @default.
- W2620979376 cites W2061632729 @default.
- W2620979376 cites W2070931313 @default.
- W2620979376 cites W2075994569 @default.
- W2620979376 cites W2083892907 @default.
- W2620979376 cites W2086882691 @default.
- W2620979376 cites W2093877717 @default.
- W2620979376 cites W2097098463 @default.
- W2620979376 cites W2127155636 @default.
- W2620979376 cites W2141755357 @default.
- W2620979376 cites W2152302532 @default.
- W2620979376 cites W2162509081 @default.
- W2620979376 cites W2165806785 @default.
- W2620979376 cites W2263512397 @default.
- W2620979376 cites W999207820 @default.
- W2620979376 doi "https://doi.org/10.1016/j.ecolmodel.2017.05.015" @default.
- W2620979376 hasPublicationYear "2017" @default.
- W2620979376 type Work @default.
- W2620979376 sameAs 2620979376 @default.
- W2620979376 citedByCount "9" @default.
- W2620979376 countsByYear W26209793762018 @default.
- W2620979376 countsByYear W26209793762020 @default.
- W2620979376 countsByYear W26209793762021 @default.
- W2620979376 countsByYear W26209793762022 @default.
- W2620979376 countsByYear W26209793762023 @default.
- W2620979376 crossrefType "journal-article" @default.
- W2620979376 hasAuthorship W2620979376A5000605706 @default.
- W2620979376 hasAuthorship W2620979376A5009247822 @default.
- W2620979376 hasAuthorship W2620979376A5031586592 @default.
- W2620979376 hasAuthorship W2620979376A5069966398 @default.
- W2620979376 hasAuthorship W2620979376A5072022077 @default.
- W2620979376 hasAuthorship W2620979376A5087269965 @default.
- W2620979376 hasBestOaLocation W26209793762 @default.
- W2620979376 hasConcept C104317684 @default.
- W2620979376 hasConcept C105795698 @default.
- W2620979376 hasConcept C107673813 @default.
- W2620979376 hasConcept C127413603 @default.
- W2620979376 hasConcept C144024400 @default.
- W2620979376 hasConcept C165838908 @default.
- W2620979376 hasConcept C18903297 @default.
- W2620979376 hasConcept C21200559 @default.
- W2620979376 hasConcept C24326235 @default.
- W2620979376 hasConcept C2775835988 @default.
- W2620979376 hasConcept C33923547 @default.
- W2620979376 hasConcept C41008148 @default.
- W2620979376 hasConcept C46312422 @default.
- W2620979376 hasConcept C55493867 @default.
- W2620979376 hasConcept C63479239 @default.
- W2620979376 hasConcept C86803240 @default.
- W2620979376 hasConcept C94361409 @default.
- W2620979376 hasConceptScore W2620979376C104317684 @default.
- W2620979376 hasConceptScore W2620979376C105795698 @default.
- W2620979376 hasConceptScore W2620979376C107673813 @default.
- W2620979376 hasConceptScore W2620979376C127413603 @default.
- W2620979376 hasConceptScore W2620979376C144024400 @default.
- W2620979376 hasConceptScore W2620979376C165838908 @default.
- W2620979376 hasConceptScore W2620979376C18903297 @default.
- W2620979376 hasConceptScore W2620979376C21200559 @default.
- W2620979376 hasConceptScore W2620979376C24326235 @default.
- W2620979376 hasConceptScore W2620979376C2775835988 @default.
- W2620979376 hasConceptScore W2620979376C33923547 @default.
- W2620979376 hasConceptScore W2620979376C41008148 @default.
- W2620979376 hasConceptScore W2620979376C46312422 @default.
- W2620979376 hasConceptScore W2620979376C55493867 @default.
- W2620979376 hasConceptScore W2620979376C63479239 @default.
- W2620979376 hasConceptScore W2620979376C86803240 @default.
- W2620979376 hasConceptScore W2620979376C94361409 @default.
- W2620979376 hasFunder F4320321114 @default.
- W2620979376 hasLocation W26209793761 @default.
- W2620979376 hasLocation W26209793762 @default.
- W2620979376 hasOpenAccess W2620979376 @default.
- W2620979376 hasPrimaryLocation W26209793761 @default.
- W2620979376 hasRelatedWork W1794828611 @default.