Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621021710> ?p ?o ?g. }
- W2621021710 endingPage "74" @default.
- W2621021710 startingPage "64" @default.
- W2621021710 abstract "Satellite-derived land cover maps play an important role in many applications, including monitoring of smallholder-dominated agricultural landscapes. New cloud-based computing platforms and satellite sensors offer opportunities for generating land cover maps designed to meet the spatial and temporal requirements of specific applications. Such maps can be a significant improvement compared to existing products, which tend to be coarser than 300 m, are often not representative of areas with fast-paced land use change, and have a fixed set of cover classes. Here, we present two approaches for land cover classification using the Landsat archive within Google Earth Engine. Random forest classification was performed with (1) season-based composites, where median values of individual bands and vegetation indices were generated from four years for each of four seasons, and (2) metric-based composites, where different quantiles were computed for the entire four-year period. These approaches were tested for six land cover types spanning over 18,000 locations in Zambia, with ground “truth” determined by visual inspection of high-resolution imagery from Google Earth. The methods were trained on 30% of these points and tested on the remaining 70%, and results were also compared with existing land cover products. Overall accuracies of about 89% were achieved for the season- and metric-based approaches for individual classes, with 93% and 94% accuracy for distinguishing cropland from non-cropland. For the latter task, the existing Globeland30 dataset based on Landsat had much lower accuracies (around 77% on average), as did existing cover maps at coarser resolutions. Overall, the results support the use of either season or metric-based classification approaches. Both produce better results than those obtained from previous classifiers, which supports a general paradigm shift away from dependence on standard static products and towards custom generation of on-demand cover maps designed to fulfill the needs of each specific application." @default.
- W2621021710 created "2017-06-09" @default.
- W2621021710 creator A5026642372 @default.
- W2621021710 creator A5052993464 @default.
- W2621021710 date "2017-12-01" @default.
- W2621021710 modified "2023-10-16" @default.
- W2621021710 title "Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring" @default.
- W2621021710 cites W1543294135 @default.
- W2621021710 cites W1838764073 @default.
- W2621021710 cites W1963768209 @default.
- W2621021710 cites W1964672965 @default.
- W2621021710 cites W1968563567 @default.
- W2621021710 cites W1981213426 @default.
- W2621021710 cites W2000318706 @default.
- W2621021710 cites W2006929658 @default.
- W2621021710 cites W2024805021 @default.
- W2621021710 cites W2031340414 @default.
- W2621021710 cites W2040218731 @default.
- W2621021710 cites W2041054901 @default.
- W2621021710 cites W2042692910 @default.
- W2621021710 cites W2047239582 @default.
- W2621021710 cites W2048976523 @default.
- W2621021710 cites W2056211433 @default.
- W2621021710 cites W2060335617 @default.
- W2621021710 cites W2072465375 @default.
- W2621021710 cites W2077570405 @default.
- W2621021710 cites W2081403294 @default.
- W2621021710 cites W2084744129 @default.
- W2621021710 cites W2120146794 @default.
- W2621021710 cites W2121690928 @default.
- W2621021710 cites W2125397877 @default.
- W2621021710 cites W2127559745 @default.
- W2621021710 cites W2137707174 @default.
- W2621021710 cites W2149813070 @default.
- W2621021710 cites W2180682969 @default.
- W2621021710 cites W2188083314 @default.
- W2621021710 cites W2191643823 @default.
- W2621021710 cites W2261059368 @default.
- W2621021710 cites W2290326488 @default.
- W2621021710 cites W2307094448 @default.
- W2621021710 cites W2386486063 @default.
- W2621021710 cites W2560167313 @default.
- W2621021710 cites W762485137 @default.
- W2621021710 doi "https://doi.org/10.1016/j.rse.2017.05.025" @default.
- W2621021710 hasPublicationYear "2017" @default.
- W2621021710 type Work @default.
- W2621021710 sameAs 2621021710 @default.
- W2621021710 citedByCount "157" @default.
- W2621021710 countsByYear W26210217102017 @default.
- W2621021710 countsByYear W26210217102018 @default.
- W2621021710 countsByYear W26210217102019 @default.
- W2621021710 countsByYear W26210217102020 @default.
- W2621021710 countsByYear W26210217102021 @default.
- W2621021710 countsByYear W26210217102022 @default.
- W2621021710 countsByYear W26210217102023 @default.
- W2621021710 crossrefType "journal-article" @default.
- W2621021710 hasAuthorship W2621021710A5026642372 @default.
- W2621021710 hasAuthorship W2621021710A5052993464 @default.
- W2621021710 hasConcept C111919701 @default.
- W2621021710 hasConcept C127413603 @default.
- W2621021710 hasConcept C142724271 @default.
- W2621021710 hasConcept C146849305 @default.
- W2621021710 hasConcept C146978453 @default.
- W2621021710 hasConcept C147176958 @default.
- W2621021710 hasConcept C154945302 @default.
- W2621021710 hasConcept C162324750 @default.
- W2621021710 hasConcept C169258074 @default.
- W2621021710 hasConcept C176217482 @default.
- W2621021710 hasConcept C19269812 @default.
- W2621021710 hasConcept C203595873 @default.
- W2621021710 hasConcept C205649164 @default.
- W2621021710 hasConcept C206887242 @default.
- W2621021710 hasConcept C21547014 @default.
- W2621021710 hasConcept C2776133958 @default.
- W2621021710 hasConcept C2778102629 @default.
- W2621021710 hasConcept C2780428219 @default.
- W2621021710 hasConcept C2780648208 @default.
- W2621021710 hasConcept C39432304 @default.
- W2621021710 hasConcept C41008148 @default.
- W2621021710 hasConcept C4792198 @default.
- W2621021710 hasConcept C62649853 @default.
- W2621021710 hasConcept C71924100 @default.
- W2621021710 hasConcept C78519656 @default.
- W2621021710 hasConcept C79974875 @default.
- W2621021710 hasConceptScore W2621021710C111919701 @default.
- W2621021710 hasConceptScore W2621021710C127413603 @default.
- W2621021710 hasConceptScore W2621021710C142724271 @default.
- W2621021710 hasConceptScore W2621021710C146849305 @default.
- W2621021710 hasConceptScore W2621021710C146978453 @default.
- W2621021710 hasConceptScore W2621021710C147176958 @default.
- W2621021710 hasConceptScore W2621021710C154945302 @default.
- W2621021710 hasConceptScore W2621021710C162324750 @default.
- W2621021710 hasConceptScore W2621021710C169258074 @default.
- W2621021710 hasConceptScore W2621021710C176217482 @default.
- W2621021710 hasConceptScore W2621021710C19269812 @default.
- W2621021710 hasConceptScore W2621021710C203595873 @default.
- W2621021710 hasConceptScore W2621021710C205649164 @default.
- W2621021710 hasConceptScore W2621021710C206887242 @default.