Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621028994> ?p ?o ?g. }
- W2621028994 endingPage "324" @default.
- W2621028994 startingPage "310" @default.
- W2621028994 abstract "This paper presents GIS-based new ensemble data mining techniques that involve an adaptive neuro-fuzzy inference system (ANGIS) with genetic algorithm, differential evolution, and particle swarm optimization for landslide spatial modelling. This research was tested in Hanyuan County, which is a landslide-prone area in Sichuan Province, China. Different continuous and categorical landslide conditioning factors according to a literature review and data availability were selected, and their maps were digitized in a GIS environment. These layers are the slope angle, slope aspect, altitude, plan curvature, profile curvature, topographic wetness index, distance to faults, distance to rivers, distance to roads, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the Sichuan Land Resources Bureau of China, 225 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, a probability certainty factor (PCF) model was used for the evaluation of the relationship between the landslides and conditioning factors. In the next step, three data mining techniques combined with the ANFIS model, including ANFIS-genetic algorithm (ANFIS-GA), ANFIS-differential evolution (ANFIS-DE), and ANFIS-particle swarm optimization (ANFIS-PSO), were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.75. At the same time, the highest AUC value was for the ANFIS-DE model (0.844), followed by ANGIS-GA (0.821), and ANFIS-PSO (0.780). In general, the proposed ensemble data mining techniques can be applied for land use planning and management of landslide susceptibility and hazard in the study area and in other areas." @default.
- W2621028994 created "2017-06-09" @default.
- W2621028994 creator A5006705342 @default.
- W2621028994 creator A5056706783 @default.
- W2621028994 creator A5058653182 @default.
- W2621028994 date "2017-10-01" @default.
- W2621028994 modified "2023-10-14" @default.
- W2621028994 title "Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling" @default.
- W2621028994 cites W1057892209 @default.
- W2621028994 cites W1595159159 @default.
- W2621028994 cites W1850710971 @default.
- W2621028994 cites W1965765785 @default.
- W2621028994 cites W1972494777 @default.
- W2621028994 cites W1973106681 @default.
- W2621028994 cites W1977813873 @default.
- W2621028994 cites W1982555346 @default.
- W2621028994 cites W1983676031 @default.
- W2621028994 cites W1988650824 @default.
- W2621028994 cites W1990748933 @default.
- W2621028994 cites W1992329860 @default.
- W2621028994 cites W1994454004 @default.
- W2621028994 cites W1999514221 @default.
- W2621028994 cites W2001571496 @default.
- W2621028994 cites W2003049509 @default.
- W2621028994 cites W2006968845 @default.
- W2621028994 cites W2007086979 @default.
- W2621028994 cites W2011048370 @default.
- W2621028994 cites W2012118327 @default.
- W2621028994 cites W2017145427 @default.
- W2621028994 cites W2017388337 @default.
- W2621028994 cites W2019207321 @default.
- W2621028994 cites W2019957091 @default.
- W2621028994 cites W2029816621 @default.
- W2621028994 cites W2034727283 @default.
- W2621028994 cites W2035699211 @default.
- W2621028994 cites W2035830726 @default.
- W2621028994 cites W2041246301 @default.
- W2621028994 cites W2041859212 @default.
- W2621028994 cites W2044648858 @default.
- W2621028994 cites W2046629514 @default.
- W2621028994 cites W2051784080 @default.
- W2621028994 cites W2053280690 @default.
- W2621028994 cites W2057044684 @default.
- W2621028994 cites W2057388082 @default.
- W2621028994 cites W2064319214 @default.
- W2621028994 cites W2065949495 @default.
- W2621028994 cites W2066848039 @default.
- W2621028994 cites W2067086056 @default.
- W2621028994 cites W2069930921 @default.
- W2621028994 cites W2071968219 @default.
- W2621028994 cites W2081345111 @default.
- W2621028994 cites W2082376913 @default.
- W2621028994 cites W2085991257 @default.
- W2621028994 cites W2088730795 @default.
- W2621028994 cites W2093703725 @default.
- W2621028994 cites W2105714409 @default.
- W2621028994 cites W2120630093 @default.
- W2621028994 cites W2125332715 @default.
- W2621028994 cites W2126649079 @default.
- W2621028994 cites W2133321814 @default.
- W2621028994 cites W2147555471 @default.
- W2621028994 cites W2148470216 @default.
- W2621028994 cites W2171612326 @default.
- W2621028994 cites W2193898033 @default.
- W2621028994 cites W2205158676 @default.
- W2621028994 cites W2224959353 @default.
- W2621028994 cites W2237443866 @default.
- W2621028994 cites W2259343653 @default.
- W2621028994 cites W2277106806 @default.
- W2621028994 cites W2336394836 @default.
- W2621028994 cites W2336933381 @default.
- W2621028994 cites W2567326027 @default.
- W2621028994 cites W4210949798 @default.
- W2621028994 cites W596984334 @default.
- W2621028994 doi "https://doi.org/10.1016/j.catena.2017.05.034" @default.
- W2621028994 hasPublicationYear "2017" @default.
- W2621028994 type Work @default.
- W2621028994 sameAs 2621028994 @default.
- W2621028994 citedByCount "249" @default.
- W2621028994 countsByYear W26210289942017 @default.
- W2621028994 countsByYear W26210289942018 @default.
- W2621028994 countsByYear W26210289942019 @default.
- W2621028994 countsByYear W26210289942020 @default.
- W2621028994 countsByYear W26210289942021 @default.
- W2621028994 countsByYear W26210289942022 @default.
- W2621028994 countsByYear W26210289942023 @default.
- W2621028994 crossrefType "journal-article" @default.
- W2621028994 hasAuthorship W2621028994A5006705342 @default.
- W2621028994 hasAuthorship W2621028994A5056706783 @default.
- W2621028994 hasAuthorship W2621028994A5058653182 @default.
- W2621028994 hasConcept C11413529 @default.
- W2621028994 hasConcept C119857082 @default.
- W2621028994 hasConcept C124101348 @default.
- W2621028994 hasConcept C127313418 @default.
- W2621028994 hasConcept C154945302 @default.
- W2621028994 hasConcept C186108316 @default.
- W2621028994 hasConcept C186295008 @default.
- W2621028994 hasConcept C187320778 @default.