Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621093036> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2621093036 endingPage "480" @default.
- W2621093036 startingPage "473" @default.
- W2621093036 abstract "Abstract. The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour." @default.
- W2621093036 created "2017-06-09" @default.
- W2621093036 creator A5060363116 @default.
- W2621093036 creator A5087406878 @default.
- W2621093036 date "2017-05-31" @default.
- W2621093036 modified "2023-09-26" @default.
- W2621093036 title "LOCALIZED SEGMENT BASED PROCESSING FOR AUTOMATIC BUILDING EXTRACTION FROM LiDAR DATA" @default.
- W2621093036 cites W2048684659 @default.
- W2621093036 cites W2117186870 @default.
- W2621093036 cites W2134345313 @default.
- W2621093036 cites W2145690812 @default.
- W2621093036 cites W2498000451 @default.
- W2621093036 doi "https://doi.org/10.5194/isprs-archives-xlii-1-w1-473-2017" @default.
- W2621093036 hasPublicationYear "2017" @default.
- W2621093036 type Work @default.
- W2621093036 sameAs 2621093036 @default.
- W2621093036 citedByCount "3" @default.
- W2621093036 countsByYear W26210930362018 @default.
- W2621093036 crossrefType "journal-article" @default.
- W2621093036 hasAuthorship W2621093036A5060363116 @default.
- W2621093036 hasAuthorship W2621093036A5087406878 @default.
- W2621093036 hasBestOaLocation W26210930361 @default.
- W2621093036 hasConcept C124101348 @default.
- W2621093036 hasConcept C124504099 @default.
- W2621093036 hasConcept C132943942 @default.
- W2621093036 hasConcept C153180895 @default.
- W2621093036 hasConcept C154945302 @default.
- W2621093036 hasConcept C166957645 @default.
- W2621093036 hasConcept C199360897 @default.
- W2621093036 hasConcept C205649164 @default.
- W2621093036 hasConcept C2776650193 @default.
- W2621093036 hasConcept C2776748203 @default.
- W2621093036 hasConcept C2778012447 @default.
- W2621093036 hasConcept C2780801425 @default.
- W2621093036 hasConcept C2781238097 @default.
- W2621093036 hasConcept C31972630 @default.
- W2621093036 hasConcept C41008148 @default.
- W2621093036 hasConcept C51399673 @default.
- W2621093036 hasConcept C62649853 @default.
- W2621093036 hasConcept C89600930 @default.
- W2621093036 hasConceptScore W2621093036C124101348 @default.
- W2621093036 hasConceptScore W2621093036C124504099 @default.
- W2621093036 hasConceptScore W2621093036C132943942 @default.
- W2621093036 hasConceptScore W2621093036C153180895 @default.
- W2621093036 hasConceptScore W2621093036C154945302 @default.
- W2621093036 hasConceptScore W2621093036C166957645 @default.
- W2621093036 hasConceptScore W2621093036C199360897 @default.
- W2621093036 hasConceptScore W2621093036C205649164 @default.
- W2621093036 hasConceptScore W2621093036C2776650193 @default.
- W2621093036 hasConceptScore W2621093036C2776748203 @default.
- W2621093036 hasConceptScore W2621093036C2778012447 @default.
- W2621093036 hasConceptScore W2621093036C2780801425 @default.
- W2621093036 hasConceptScore W2621093036C2781238097 @default.
- W2621093036 hasConceptScore W2621093036C31972630 @default.
- W2621093036 hasConceptScore W2621093036C41008148 @default.
- W2621093036 hasConceptScore W2621093036C51399673 @default.
- W2621093036 hasConceptScore W2621093036C62649853 @default.
- W2621093036 hasConceptScore W2621093036C89600930 @default.
- W2621093036 hasLocation W26210930361 @default.
- W2621093036 hasLocation W26210930362 @default.
- W2621093036 hasOpenAccess W2621093036 @default.
- W2621093036 hasPrimaryLocation W26210930361 @default.
- W2621093036 hasRelatedWork W1669643531 @default.
- W2621093036 hasRelatedWork W1963494852 @default.
- W2621093036 hasRelatedWork W2004370856 @default.
- W2621093036 hasRelatedWork W2019566805 @default.
- W2621093036 hasRelatedWork W2045615376 @default.
- W2621093036 hasRelatedWork W2101128524 @default.
- W2621093036 hasRelatedWork W2122581818 @default.
- W2621093036 hasRelatedWork W2134731391 @default.
- W2621093036 hasRelatedWork W2383464976 @default.
- W2621093036 hasRelatedWork W1967061043 @default.
- W2621093036 hasVolume "XLII-1/W1" @default.
- W2621093036 isParatext "false" @default.
- W2621093036 isRetracted "false" @default.
- W2621093036 magId "2621093036" @default.
- W2621093036 workType "article" @default.