Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621167117> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2621167117 abstract "The dependent sum type of Martin-Lof's type theory provides a strong existential elimination, which allows to prove the full axiom of choice. The proof is simple and constructive: $$AC_A := lambda H. (lambda x. wit,(H, x), lambda x. prf,(H,x)) : forall (x:A) exists (y:B) P(x, y) Rightarrow exists (f:Ato B) forall (x:A) P(x, f (x)) $$where 'wit' and 'prf' are the first and second projections of a strong existential quantifier. We present here a continuation of Herbelin's works, who proposed a way of scaling up Martin-Lof proof to classical logic. The first idea is to restrict the dependent sum type to a fragment of our system we call N-elimination-free, making it computationally compatible with classical logic. The second idea is to represent a countable universal quantification as an infinite conjunction. This allows to internalize into a formal system (called dPAω) the realizability approach as a direct proof-as-programs interpretation.In a recent paper, Ariola et al. presented a way to construct a CPS-translation for a call-by-need version of the $barlambdamutildemu$-calculus, which allows some sharing facilities. Yet, this translation does notenjoy any typing property, and then does not give us a way of proving normalization. Moreover, the $barlambdamutildemu$-calculus is typed with sequent calculus [4], which does not allow to manipulate dependent types immediately.We propose to deal with both problems while proving the normalization of our system in two steps. First, we translate our calculus to an adequate version of the $barlambdamutildemu$-calculus that allows to manipulate dependent types on the N-elimination-free fragment. Then we will try to adapt the CPS-translation for call-by-need to our case, while adding it a type." @default.
- W2621167117 created "2017-06-09" @default.
- W2621167117 creator A5010564634 @default.
- W2621167117 creator A5060487163 @default.
- W2621167117 date "2015-05-18" @default.
- W2621167117 modified "2023-09-27" @default.
- W2621167117 title "Toward dependent choice: a classical sequent calculus with dependent types" @default.
- W2621167117 cites W103061485 @default.
- W2621167117 cites W2068413129 @default.
- W2621167117 cites W2107359728 @default.
- W2621167117 hasPublicationYear "2015" @default.
- W2621167117 type Work @default.
- W2621167117 sameAs 2621167117 @default.
- W2621167117 citedByCount "0" @default.
- W2621167117 crossrefType "proceedings-article" @default.
- W2621167117 hasAuthorship W2621167117A5010564634 @default.
- W2621167117 hasAuthorship W2621167117A5060487163 @default.
- W2621167117 hasBestOaLocation W26211671171 @default.
- W2621167117 hasConcept C108710211 @default.
- W2621167117 hasConcept C111404639 @default.
- W2621167117 hasConcept C11413529 @default.
- W2621167117 hasConcept C199343813 @default.
- W2621167117 hasConcept C199360897 @default.
- W2621167117 hasConcept C2524010 @default.
- W2621167117 hasConcept C2777686260 @default.
- W2621167117 hasConcept C33923547 @default.
- W2621167117 hasConcept C41008148 @default.
- W2621167117 hasConcept C62073222 @default.
- W2621167117 hasConcept C6489637 @default.
- W2621167117 hasConcept C65880906 @default.
- W2621167117 hasConcept C71924100 @default.
- W2621167117 hasConcept C89421646 @default.
- W2621167117 hasConceptScore W2621167117C108710211 @default.
- W2621167117 hasConceptScore W2621167117C111404639 @default.
- W2621167117 hasConceptScore W2621167117C11413529 @default.
- W2621167117 hasConceptScore W2621167117C199343813 @default.
- W2621167117 hasConceptScore W2621167117C199360897 @default.
- W2621167117 hasConceptScore W2621167117C2524010 @default.
- W2621167117 hasConceptScore W2621167117C2777686260 @default.
- W2621167117 hasConceptScore W2621167117C33923547 @default.
- W2621167117 hasConceptScore W2621167117C41008148 @default.
- W2621167117 hasConceptScore W2621167117C62073222 @default.
- W2621167117 hasConceptScore W2621167117C6489637 @default.
- W2621167117 hasConceptScore W2621167117C65880906 @default.
- W2621167117 hasConceptScore W2621167117C71924100 @default.
- W2621167117 hasConceptScore W2621167117C89421646 @default.
- W2621167117 hasLocation W26211671171 @default.
- W2621167117 hasLocation W26211671172 @default.
- W2621167117 hasOpenAccess W2621167117 @default.
- W2621167117 hasPrimaryLocation W26211671171 @default.
- W2621167117 hasRelatedWork W1562648369 @default.
- W2621167117 hasRelatedWork W1566344352 @default.
- W2621167117 hasRelatedWork W2010605843 @default.
- W2621167117 hasRelatedWork W2137780954 @default.
- W2621167117 hasRelatedWork W2351433375 @default.
- W2621167117 hasRelatedWork W2513857873 @default.
- W2621167117 hasRelatedWork W2891688494 @default.
- W2621167117 hasRelatedWork W3090765541 @default.
- W2621167117 hasRelatedWork W4289719533 @default.
- W2621167117 hasRelatedWork W2584381231 @default.
- W2621167117 isParatext "false" @default.
- W2621167117 isRetracted "false" @default.
- W2621167117 magId "2621167117" @default.
- W2621167117 workType "article" @default.