Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621394053> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2621394053 endingPage "58" @default.
- W2621394053 startingPage "51" @default.
- W2621394053 abstract "Interconnectivity of production machines is a key feature of the Industrial Internet of Things (IIoT). This feature allows for many advantages in producing. Configuration and maintenance gets easier, as access to the given production unit is not necessarily coupled to physical presence. Customized production of goods is easily possible, reducing production times and increasing throughput. There are, however, also dangers to the increasing talkativeness of industrial production machines. The more open a system is, the more points of entry for an attacker exist. Furthermore, the amount of data a production site also increases rapidly due to the integrated intelligence and interconnectivity. To keep track of this data in order to detect attacks and errors in the production site, it is necessary to smartly aggregate and evaluate the data. In this paper, we present a new approach for collecting, aggregating and analysing data from different sources and on three different levels of abstraction. Our model is event-centric, considering every occurrence of information inside the system as an event. In the lowest level of abstraction, singular packets are collected, correlated with log-entries and analysed. On the highest level of abstraction, networks are pictured as a connectivity graph, enriched with information about host-based activities. Furthermore, we describe our work in progress of evaluating our aggregation model on two different system settings. In the first scenario, we verify the usability of our model in a remote maintenance application. In the second scenario, we evaluate our model in the context of network sniffing and correlation with log-files. First results show that our model is a promising solution to cope with increasing amounts of data and to correlate information from different types of sources." @default.
- W2621394053 created "2017-06-09" @default.
- W2621394053 creator A5004338810 @default.
- W2621394053 creator A5008473850 @default.
- W2621394053 creator A5060209639 @default.
- W2621394053 creator A5066653225 @default.
- W2621394053 creator A5078305527 @default.
- W2621394053 date "2019-05-01" @default.
- W2621394053 modified "2023-09-26" @default.
- W2621394053 title "Highly Scalable and Flexible Model for Effective Aggregation of Context-based Data in Generic IIoT Scenarios." @default.
- W2621394053 hasPublicationYear "2019" @default.
- W2621394053 type Work @default.
- W2621394053 sameAs 2621394053 @default.
- W2621394053 citedByCount "1" @default.
- W2621394053 countsByYear W26213940532017 @default.
- W2621394053 crossrefType "journal-article" @default.
- W2621394053 hasAuthorship W2621394053A5004338810 @default.
- W2621394053 hasAuthorship W2621394053A5008473850 @default.
- W2621394053 hasAuthorship W2621394053A5060209639 @default.
- W2621394053 hasAuthorship W2621394053A5066653225 @default.
- W2621394053 hasAuthorship W2621394053A5078305527 @default.
- W2621394053 hasConcept C111472728 @default.
- W2621394053 hasConcept C120314980 @default.
- W2621394053 hasConcept C124101348 @default.
- W2621394053 hasConcept C124304363 @default.
- W2621394053 hasConcept C138885662 @default.
- W2621394053 hasConcept C151730666 @default.
- W2621394053 hasConcept C154945302 @default.
- W2621394053 hasConcept C25516864 @default.
- W2621394053 hasConcept C2779343474 @default.
- W2621394053 hasConcept C41008148 @default.
- W2621394053 hasConcept C48044578 @default.
- W2621394053 hasConcept C77088390 @default.
- W2621394053 hasConcept C86803240 @default.
- W2621394053 hasConceptScore W2621394053C111472728 @default.
- W2621394053 hasConceptScore W2621394053C120314980 @default.
- W2621394053 hasConceptScore W2621394053C124101348 @default.
- W2621394053 hasConceptScore W2621394053C124304363 @default.
- W2621394053 hasConceptScore W2621394053C138885662 @default.
- W2621394053 hasConceptScore W2621394053C151730666 @default.
- W2621394053 hasConceptScore W2621394053C154945302 @default.
- W2621394053 hasConceptScore W2621394053C25516864 @default.
- W2621394053 hasConceptScore W2621394053C2779343474 @default.
- W2621394053 hasConceptScore W2621394053C41008148 @default.
- W2621394053 hasConceptScore W2621394053C48044578 @default.
- W2621394053 hasConceptScore W2621394053C77088390 @default.
- W2621394053 hasConceptScore W2621394053C86803240 @default.
- W2621394053 hasLocation W26213940531 @default.
- W2621394053 hasOpenAccess W2621394053 @default.
- W2621394053 hasPrimaryLocation W26213940531 @default.
- W2621394053 hasRelatedWork W1916464331 @default.
- W2621394053 hasRelatedWork W1964204142 @default.
- W2621394053 hasRelatedWork W2195236491 @default.
- W2621394053 hasRelatedWork W2201680715 @default.
- W2621394053 hasRelatedWork W2205322416 @default.
- W2621394053 hasRelatedWork W2291057794 @default.
- W2621394053 hasRelatedWork W2625673138 @default.
- W2621394053 hasRelatedWork W2754988540 @default.
- W2621394053 hasRelatedWork W2758574010 @default.
- W2621394053 hasRelatedWork W2769801509 @default.
- W2621394053 hasRelatedWork W2782916355 @default.
- W2621394053 hasRelatedWork W2801253724 @default.
- W2621394053 hasRelatedWork W2913308861 @default.
- W2621394053 hasRelatedWork W2927664565 @default.
- W2621394053 hasRelatedWork W2953044130 @default.
- W2621394053 hasRelatedWork W3084155867 @default.
- W2621394053 hasRelatedWork W3118758244 @default.
- W2621394053 hasRelatedWork W3186443635 @default.
- W2621394053 hasRelatedWork W343520353 @default.
- W2621394053 hasRelatedWork W2157620224 @default.
- W2621394053 isParatext "false" @default.
- W2621394053 isRetracted "false" @default.
- W2621394053 magId "2621394053" @default.
- W2621394053 workType "article" @default.