Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621477274> ?p ?o ?g. }
- W2621477274 endingPage "284" @default.
- W2621477274 startingPage "276" @default.
- W2621477274 abstract "Cardiac left ventricle (LV) quantification is among the most clinically important tasks for identification and diagnosis of cardiac diseases, yet still a challenge due to the high variability of cardiac structure and the complexity of temporal dynamics. Full quantification, i.e., to simultaneously quantify all LV indices including two areas (cavity and myocardium), six regional wall thicknesses (RWT), three LV dimensions, and one cardiac phase, is even more challenging since the uncertain relatedness intra and inter each type of indices may hinder the learning procedure from better convergence and generalization. In this paper, we propose a newly-designed multitask learning network (FullLVNet), which is constituted by a deep convolution neural network (CNN) for expressive feature embedding of cardiac structure; two followed parallel recurrent neural network (RNN) modules for temporal dynamic modeling; and four linear models for the final estimation. During the final estimation, both intra- and inter-task relatedness are modeled to enforce improvement of generalization: (1) respecting intra-task relatedness, group lasso is applied to each of the regression tasks for sparse and common feature selection and consistent prediction; (2) respecting inter-task relatedness, three phase-guided constraints are proposed to penalize violation of the temporal behavior of the obtained LV indices. Experiments on MR sequences of 145 subjects show that FullLVNet achieves high accurate prediction with our intra- and inter-task relatedness, leading to MAE of 190 mm $$^2$$ , 1.41 mm, 2.68 mm for average areas, RWT, dimensions and error rate of 10.4% for the phase classification. This endows our method a great potential in comprehensive clinical assessment of global, regional and dynamic cardiac function." @default.
- W2621477274 created "2017-06-15" @default.
- W2621477274 creator A5018803355 @default.
- W2621477274 creator A5023619692 @default.
- W2621477274 creator A5027394528 @default.
- W2621477274 creator A5043296622 @default.
- W2621477274 creator A5073290406 @default.
- W2621477274 creator A5073778003 @default.
- W2621477274 date "2017-01-01" @default.
- W2621477274 modified "2023-10-13" @default.
- W2621477274 title "Full Quantification of Left Ventricle via Deep Multitask Learning Network Respecting Intra- and Inter-Task Relatedness" @default.
- W2621477274 cites W1038736503 @default.
- W2621477274 cites W1820889844 @default.
- W2621477274 cites W1896424170 @default.
- W2621477274 cites W1901581672 @default.
- W2621477274 cites W1987015763 @default.
- W2621477274 cites W1987512289 @default.
- W2621477274 cites W2037062805 @default.
- W2621477274 cites W2122126162 @default.
- W2621477274 cites W2153784828 @default.
- W2621477274 cites W2255189008 @default.
- W2621477274 cites W2295452827 @default.
- W2621477274 cites W2404602184 @default.
- W2621477274 cites W2524916860 @default.
- W2621477274 cites W2558764425 @default.
- W2621477274 cites W2962807789 @default.
- W2621477274 cites W950853366 @default.
- W2621477274 doi "https://doi.org/10.1007/978-3-319-66179-7_32" @default.
- W2621477274 hasPublicationYear "2017" @default.
- W2621477274 type Work @default.
- W2621477274 sameAs 2621477274 @default.
- W2621477274 citedByCount "40" @default.
- W2621477274 countsByYear W26214772742018 @default.
- W2621477274 countsByYear W26214772742019 @default.
- W2621477274 countsByYear W26214772742020 @default.
- W2621477274 countsByYear W26214772742021 @default.
- W2621477274 countsByYear W26214772742022 @default.
- W2621477274 countsByYear W26214772742023 @default.
- W2621477274 crossrefType "book-chapter" @default.
- W2621477274 hasAuthorship W2621477274A5018803355 @default.
- W2621477274 hasAuthorship W2621477274A5023619692 @default.
- W2621477274 hasAuthorship W2621477274A5027394528 @default.
- W2621477274 hasAuthorship W2621477274A5043296622 @default.
- W2621477274 hasAuthorship W2621477274A5073290406 @default.
- W2621477274 hasAuthorship W2621477274A5073778003 @default.
- W2621477274 hasBestOaLocation W26214772742 @default.
- W2621477274 hasConcept C108583219 @default.
- W2621477274 hasConcept C119857082 @default.
- W2621477274 hasConcept C134306372 @default.
- W2621477274 hasConcept C136764020 @default.
- W2621477274 hasConcept C138885662 @default.
- W2621477274 hasConcept C153180895 @default.
- W2621477274 hasConcept C154945302 @default.
- W2621477274 hasConcept C162324750 @default.
- W2621477274 hasConcept C164705383 @default.
- W2621477274 hasConcept C177148314 @default.
- W2621477274 hasConcept C187736073 @default.
- W2621477274 hasConcept C2776401178 @default.
- W2621477274 hasConcept C2778921608 @default.
- W2621477274 hasConcept C2780451532 @default.
- W2621477274 hasConcept C28006648 @default.
- W2621477274 hasConcept C33923547 @default.
- W2621477274 hasConcept C37616216 @default.
- W2621477274 hasConcept C41008148 @default.
- W2621477274 hasConcept C41895202 @default.
- W2621477274 hasConcept C50644808 @default.
- W2621477274 hasConcept C71924100 @default.
- W2621477274 hasConceptScore W2621477274C108583219 @default.
- W2621477274 hasConceptScore W2621477274C119857082 @default.
- W2621477274 hasConceptScore W2621477274C134306372 @default.
- W2621477274 hasConceptScore W2621477274C136764020 @default.
- W2621477274 hasConceptScore W2621477274C138885662 @default.
- W2621477274 hasConceptScore W2621477274C153180895 @default.
- W2621477274 hasConceptScore W2621477274C154945302 @default.
- W2621477274 hasConceptScore W2621477274C162324750 @default.
- W2621477274 hasConceptScore W2621477274C164705383 @default.
- W2621477274 hasConceptScore W2621477274C177148314 @default.
- W2621477274 hasConceptScore W2621477274C187736073 @default.
- W2621477274 hasConceptScore W2621477274C2776401178 @default.
- W2621477274 hasConceptScore W2621477274C2778921608 @default.
- W2621477274 hasConceptScore W2621477274C2780451532 @default.
- W2621477274 hasConceptScore W2621477274C28006648 @default.
- W2621477274 hasConceptScore W2621477274C33923547 @default.
- W2621477274 hasConceptScore W2621477274C37616216 @default.
- W2621477274 hasConceptScore W2621477274C41008148 @default.
- W2621477274 hasConceptScore W2621477274C41895202 @default.
- W2621477274 hasConceptScore W2621477274C50644808 @default.
- W2621477274 hasConceptScore W2621477274C71924100 @default.
- W2621477274 hasLocation W26214772741 @default.
- W2621477274 hasLocation W26214772742 @default.
- W2621477274 hasOpenAccess W2621477274 @default.
- W2621477274 hasPrimaryLocation W26214772741 @default.
- W2621477274 hasRelatedWork W1630076647 @default.
- W2621477274 hasRelatedWork W2212119398 @default.
- W2621477274 hasRelatedWork W2353214236 @default.
- W2621477274 hasRelatedWork W2402911890 @default.
- W2621477274 hasRelatedWork W2412248164 @default.
- W2621477274 hasRelatedWork W3025229005 @default.