Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621704789> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2621704789 endingPage "217" @default.
- W2621704789 startingPage "209" @default.
- W2621704789 abstract "Background: Sleep disorders become one of the early warnings of potential Non-Communicable Diseases (NCDs). Polysomnography (PSG) or sleep test is a formal method to diagnose sleep disorders. However, the PSG is limited in many hospitals due to its high costs. It also requires various sensors attached to a patient, which may cause inconvenience. Moreover, trained sleep specialists are required to interpret the gigantic PSG data. Researchers attempt to identify sleep disorders using alternative techniques. Method: This study proposed an alternative technique for sleep-related syndrome and sleep disorder classification with optimal features. Patient PSG datasets were retrieved from a hospital in the south of Thailand. In the data preprocessing stage, the datasets were analyzed and normalized using feature extraction and selection mechanisms. Optimal feature selection using the average information gain values was evaluated with the 10-fold cross validation. Four Machine Learning (ML) techniques, k MC, k NN, SVM and MLP, were used in our experiments. The selected ML techniques have been performed and evaluated with the 10-fold cross validation in data preprocessing and model construction phases. Results: The k NN achieved the highest overall classification results. The optimal features with k NN ( opf - k NN) was proposed. The selected features were PULSE, SAO2, CANR and CHEST. With the selected optimal features, only the ordinary oxygen oximeter and the ECG machine were required. Overall classification result of the opf-k NN achieved at 95.17%±3.91. Conclusion: Although the PSG is the formal sleep disorder diagnosis, alternative diagnostic techniques are beneficial especially to patients. Our study proposed the opf - k NN technique to classify sleep disorders with two concerns, the limited access to high-priced medical equipment and patient comfortability. Finally, sleep specialists also obtain benefits in optimizing bio-signal interpretations with only four optimal features." @default.
- W2621704789 created "2017-06-15" @default.
- W2621704789 creator A5010472516 @default.
- W2621704789 creator A5073560663 @default.
- W2621704789 date "2017-01-01" @default.
- W2621704789 modified "2023-09-26" @default.
- W2621704789 title "A Classification of Sleep Disorders with Optimal Features Using Machine Learning Techniques" @default.
- W2621704789 cites W1018270811 @default.
- W2621704789 cites W1508729303 @default.
- W2621704789 cites W2009633108 @default.
- W2621704789 cites W2078104122 @default.
- W2621704789 cites W2089400706 @default.
- W2621704789 cites W2128284264 @default.
- W2621704789 cites W2133990480 @default.
- W2621704789 cites W2140190241 @default.
- W2621704789 cites W2435251607 @default.
- W2621704789 cites W2473506112 @default.
- W2621704789 cites W3022302886 @default.
- W2621704789 cites W63807005 @default.
- W2621704789 doi "https://doi.org/10.14456/jhr.2017.26" @default.
- W2621704789 hasPublicationYear "2017" @default.
- W2621704789 type Work @default.
- W2621704789 sameAs 2621704789 @default.
- W2621704789 citedByCount "0" @default.
- W2621704789 crossrefType "journal-article" @default.
- W2621704789 hasAuthorship W2621704789A5010472516 @default.
- W2621704789 hasAuthorship W2621704789A5073560663 @default.
- W2621704789 hasConcept C10551718 @default.
- W2621704789 hasConcept C111919701 @default.
- W2621704789 hasConcept C118552586 @default.
- W2621704789 hasConcept C119857082 @default.
- W2621704789 hasConcept C12267149 @default.
- W2621704789 hasConcept C148483581 @default.
- W2621704789 hasConcept C153180895 @default.
- W2621704789 hasConcept C154945302 @default.
- W2621704789 hasConcept C27181475 @default.
- W2621704789 hasConcept C2775841894 @default.
- W2621704789 hasConcept C2778205975 @default.
- W2621704789 hasConcept C34736171 @default.
- W2621704789 hasConcept C41008148 @default.
- W2621704789 hasConcept C522805319 @default.
- W2621704789 hasConcept C52622490 @default.
- W2621704789 hasConcept C71924100 @default.
- W2621704789 hasConcept C81917197 @default.
- W2621704789 hasConceptScore W2621704789C10551718 @default.
- W2621704789 hasConceptScore W2621704789C111919701 @default.
- W2621704789 hasConceptScore W2621704789C118552586 @default.
- W2621704789 hasConceptScore W2621704789C119857082 @default.
- W2621704789 hasConceptScore W2621704789C12267149 @default.
- W2621704789 hasConceptScore W2621704789C148483581 @default.
- W2621704789 hasConceptScore W2621704789C153180895 @default.
- W2621704789 hasConceptScore W2621704789C154945302 @default.
- W2621704789 hasConceptScore W2621704789C27181475 @default.
- W2621704789 hasConceptScore W2621704789C2775841894 @default.
- W2621704789 hasConceptScore W2621704789C2778205975 @default.
- W2621704789 hasConceptScore W2621704789C34736171 @default.
- W2621704789 hasConceptScore W2621704789C41008148 @default.
- W2621704789 hasConceptScore W2621704789C522805319 @default.
- W2621704789 hasConceptScore W2621704789C52622490 @default.
- W2621704789 hasConceptScore W2621704789C71924100 @default.
- W2621704789 hasConceptScore W2621704789C81917197 @default.
- W2621704789 hasIssue "3" @default.
- W2621704789 hasLocation W26217047891 @default.
- W2621704789 hasOpenAccess W2621704789 @default.
- W2621704789 hasPrimaryLocation W26217047891 @default.
- W2621704789 hasRelatedWork W1866248554 @default.
- W2621704789 hasRelatedWork W2048219658 @default.
- W2621704789 hasRelatedWork W2058807024 @default.
- W2621704789 hasRelatedWork W2560384232 @default.
- W2621704789 hasRelatedWork W2898862906 @default.
- W2621704789 hasRelatedWork W2912348337 @default.
- W2621704789 hasRelatedWork W2980229846 @default.
- W2621704789 hasRelatedWork W2989259085 @default.
- W2621704789 hasRelatedWork W3015546454 @default.
- W2621704789 hasRelatedWork W3020614521 @default.
- W2621704789 hasRelatedWork W3035648745 @default.
- W2621704789 hasRelatedWork W3046979023 @default.
- W2621704789 hasRelatedWork W3081734406 @default.
- W2621704789 hasRelatedWork W3090467408 @default.
- W2621704789 hasRelatedWork W3118835742 @default.
- W2621704789 hasRelatedWork W3153658507 @default.
- W2621704789 hasRelatedWork W3154307342 @default.
- W2621704789 hasRelatedWork W3183768101 @default.
- W2621704789 hasRelatedWork W3194287152 @default.
- W2621704789 hasRelatedWork W3207449601 @default.
- W2621704789 hasVolume "31" @default.
- W2621704789 isParatext "false" @default.
- W2621704789 isRetracted "false" @default.
- W2621704789 magId "2621704789" @default.
- W2621704789 workType "article" @default.