Matches in SemOpenAlex for { <https://semopenalex.org/work/W2621922016> ?p ?o ?g. }
- W2621922016 abstract "Toward a Functional Model of Human Language Processing Jerry Ball 1 , Mary Freiman 2 , Stuart Rodgers 3 & Christopher Myers 1 Air Force Research Laboratory 1 , L3 Communications 2 , AGS TechNet 3 Jerry.Ball@mesa.afmc.af.mil, Mary.Freiman@mesa.afmc.af.mil, Stu@agstechnet.com, Christopher.Myers@mesa.afmc.af.mil Abstract This paper describes a computational cognitive model of human language processing under development in the ACT- R cognitive architecture. The paper begins with the context for the research, followed by a discussion of the primary theoretical and modeling commitments. The main theoretical commitment is to develop a language model which is at once functional and cognitively plausible. The paper continues with a description of the word recognition subcomponent of the language model which uses a perceptual span and ACT- R‟s spreading activation mechanism to activate and select the lexical unit that most closely matches the perceptual input. Next we present a description of the linguistic structure building component of the model which combines parallel, probabilistic processing with serial, pseudo- deterministic processing, including a non-monotonic context accommodation mechanism. A description of the mapping of linguistic representations into a situation model, follows. The paper concludes with a summary and conclusions. Keywords: human language processing (HLP); functional; cognitively plausible; pseudo-deterministic. Introduction The capability to model the cognitive processes associated with language is a long sought-after goal of cognitive science. Computational cognitive process models help researchers to not only understand language processes in their own right, but to determine how they affect and interact with other cognitive processes (e.g., reasoning, decision-making, situation assessment, etc.). Scaled-up versions of these models also support the development of cognitive agents with communicative capabilities based on human linguistic processes (Ball et al., 2009; Douglass, Ball & Rodgers, 2009). In this paper we present a “snapshot” of a functional language comprehension model under development within the ACT-R architecture (Anderson, 2007). The model implements a referential and relational theory of human language processing (Ball, 2007; Ball, Heiberg & Silber, 2007) within ACT-R 1 . A key commitment of the language comprehension research is development of a model which is at once cognitively plausible and functional. We believe that adherence to well-established cognitive constraints will At the time of publication the model contained 6,395 declarative memory elements and 548 production rules which cover a broad range of grammatical constructions. facilitate the development of functional models by pushing development in directions that are more likely to be successful. There are short-term costs associated with adherence to cognitive constraints; however, we have already realized longer-term benefits. For example, the integration of a word recognition capability with ACT-R‟s perceptual system and higher-level linguistic processing has facilitated the recognition and processing of multi-word expressions and multi-unit words in ways that are not available to systems with separate word tokenizing and part of speech tagging processes. Using an available tokenizer and part of speech tagger would have initially facilitated development, but the cognitive implausibility of using staged tokenizing and part of speech tagging led us to reject this approach. The benefits that we have realized as a result of this decision are described below. Theoretical & Modeling Commitments There is extensive psycholinguistic evidence that human language processing is incremental and interactive (Gibson & Pearlmutter, 1998; Altmann, 1998; Tanenhaus et al., 1995; Altmann & Steedman, 1988). Garden-path effects, although infrequent, strongly suggest that processing is essentially serial at the level of phrasal and clausal analysis (Bever, 1970). Lower level processes of word recognition suggest parallel, activation-based processing mechanisms (McClelland & Rumelhart, 1981; Paap et al., 1982). Summarizing the psycholinguistic evidence, Altmann & Mirkovic (2009, p. 605) claim “The view we are left with is a comprehension system that is „maximally incremental‟; it develops the fullest interpretation of a sentence fragment at each moment of the fragment‟s unfolding”. These cognitive constraints legislate against staged analysis models. All levels of analysis must at least be highly pipelined together, if not, in addition, allowing feedback from higher to lower levels. They also suggest the need for hybrid systems which incorporate a mixture of parallel and serial mechanisms, with lower levels of processing being primarily parallel, probabilistic and interactive, while higher levels of analysis are primarily serial, deterministic and incremental. To adhere to and take advantage of these cognitive constraints, we have developed a pseudo-deterministic human language processing model—i.e. a model that presents the appearance and efficiency of serial, deterministic processing, but uses a non-monotonic context" @default.
- W2621922016 created "2017-06-15" @default.
- W2621922016 creator A5024465311 @default.
- W2621922016 creator A5062521629 @default.
- W2621922016 creator A5072737035 @default.
- W2621922016 creator A5086682305 @default.
- W2621922016 date "2010-01-01" @default.
- W2621922016 modified "2023-09-22" @default.
- W2621922016 title "Toward a Functional Model of Human Language Processing" @default.
- W2621922016 cites W111620888 @default.
- W2621922016 cites W1552216330 @default.
- W2621922016 cites W1586060904 @default.
- W2621922016 cites W1601535928 @default.
- W2621922016 cites W1928882148 @default.
- W2621922016 cites W1971360935 @default.
- W2621922016 cites W1973136201 @default.
- W2621922016 cites W2000415454 @default.
- W2621922016 cites W2020755048 @default.
- W2621922016 cites W2030831236 @default.
- W2621922016 cites W2053374418 @default.
- W2621922016 cites W2056367827 @default.
- W2621922016 cites W2060395238 @default.
- W2621922016 cites W2073257493 @default.
- W2621922016 cites W2076621986 @default.
- W2621922016 cites W2087764958 @default.
- W2621922016 cites W2090317687 @default.
- W2621922016 cites W2092409509 @default.
- W2621922016 cites W2097785963 @default.
- W2621922016 cites W2110342776 @default.
- W2621922016 cites W2120860073 @default.
- W2621922016 cites W2123269155 @default.
- W2621922016 cites W2124741472 @default.
- W2621922016 cites W2136518234 @default.
- W2621922016 cites W2162189770 @default.
- W2621922016 cites W2162390035 @default.
- W2621922016 cites W2165683312 @default.
- W2621922016 cites W2399571338 @default.
- W2621922016 cites W2506931122 @default.
- W2621922016 cites W2554946234 @default.
- W2621922016 cites W2607076905 @default.
- W2621922016 cites W2769291458 @default.
- W2621922016 cites W3021252391 @default.
- W2621922016 cites W595721465 @default.
- W2621922016 hasPublicationYear "2010" @default.
- W2621922016 type Work @default.
- W2621922016 sameAs 2621922016 @default.
- W2621922016 citedByCount "7" @default.
- W2621922016 countsByYear W26219220162013 @default.
- W2621922016 countsByYear W26219220162017 @default.
- W2621922016 countsByYear W26219220162019 @default.
- W2621922016 crossrefType "journal-article" @default.
- W2621922016 hasAuthorship W2621922016A5024465311 @default.
- W2621922016 hasAuthorship W2621922016A5062521629 @default.
- W2621922016 hasAuthorship W2621922016A5072737035 @default.
- W2621922016 hasAuthorship W2621922016A5086682305 @default.
- W2621922016 hasConcept C138885662 @default.
- W2621922016 hasConcept C151730666 @default.
- W2621922016 hasConcept C154945302 @default.
- W2621922016 hasConcept C15744967 @default.
- W2621922016 hasConcept C161407221 @default.
- W2621922016 hasConcept C169760540 @default.
- W2621922016 hasConcept C169900460 @default.
- W2621922016 hasConcept C180747234 @default.
- W2621922016 hasConcept C188147891 @default.
- W2621922016 hasConcept C20854674 @default.
- W2621922016 hasConcept C26760741 @default.
- W2621922016 hasConcept C2779343474 @default.
- W2621922016 hasConcept C41008148 @default.
- W2621922016 hasConcept C41895202 @default.
- W2621922016 hasConcept C86803240 @default.
- W2621922016 hasConceptScore W2621922016C138885662 @default.
- W2621922016 hasConceptScore W2621922016C151730666 @default.
- W2621922016 hasConceptScore W2621922016C154945302 @default.
- W2621922016 hasConceptScore W2621922016C15744967 @default.
- W2621922016 hasConceptScore W2621922016C161407221 @default.
- W2621922016 hasConceptScore W2621922016C169760540 @default.
- W2621922016 hasConceptScore W2621922016C169900460 @default.
- W2621922016 hasConceptScore W2621922016C180747234 @default.
- W2621922016 hasConceptScore W2621922016C188147891 @default.
- W2621922016 hasConceptScore W2621922016C20854674 @default.
- W2621922016 hasConceptScore W2621922016C26760741 @default.
- W2621922016 hasConceptScore W2621922016C2779343474 @default.
- W2621922016 hasConceptScore W2621922016C41008148 @default.
- W2621922016 hasConceptScore W2621922016C41895202 @default.
- W2621922016 hasConceptScore W2621922016C86803240 @default.
- W2621922016 hasIssue "32" @default.
- W2621922016 hasLocation W26219220161 @default.
- W2621922016 hasOpenAccess W2621922016 @default.
- W2621922016 hasPrimaryLocation W26219220161 @default.
- W2621922016 hasRelatedWork W1573802015 @default.
- W2621922016 hasRelatedWork W1586049884 @default.
- W2621922016 hasRelatedWork W1800750688 @default.
- W2621922016 hasRelatedWork W1928882148 @default.
- W2621922016 hasRelatedWork W2022591411 @default.
- W2621922016 hasRelatedWork W2057475778 @default.
- W2621922016 hasRelatedWork W2069505315 @default.
- W2621922016 hasRelatedWork W2114077183 @default.
- W2621922016 hasRelatedWork W2269170906 @default.
- W2621922016 hasRelatedWork W23517672 @default.
- W2621922016 hasRelatedWork W2440945685 @default.