Matches in SemOpenAlex for { <https://semopenalex.org/work/W2622214109> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2622214109 abstract "Current networks have much limitations due to their rigidity, which is given by static configurations mainly based on commands or static scripts. The resource provisioning is less automatic and the efficiency decreases. Moreover, virtualization and cloud are changing radically the traffic patterns of the data center. This is mainly due to the communication between servers, because the applications are split in many virtual machines that must communicate. Software Defined Networks (SDNs) are able to divide the control plane from the data plane, which allow higher programmable, automatic and flexible networks. In SDNs, we do not need to program node by node, but by a centralized manner through software that can be implemented independently of the manufacturer or the model (if they are supporting the same communication protocol). SDNs provide a more open network and allow accessing better to certain intelligent functions, which can contribute higher intelligence to the network operating. These features make SDNs ideal to have a system that is able to adapt with the aim of having higher performance. Cognitive networks use the information gathered from the network, such as observing traffic patterns for different network devices or the used protocols, the behavior of the users and servers, and the additional information that can be taken from the wireless networks (user movement, location, etc.), in order to implement a series of procedures. In order to achieve this goal, artificial intelligence and automatic learning will be used over the available information. This will allow improving a specific objective and achieve higher system performance. This speech will show the steps performed in a cooperative project where we designed and developed a network architecture and the communication protocol, that use the cognitive information taken from the data frames, the users and servers behavior, and the traffic patterns (traffic changes, quality of service parameters, state of the frames, etc.) with the aim of improving the multimedia delivery performance. The designed network is able to self adapt in each case. Network devices gather network parameters and patters that are used by a smart network algorithm to evolve behaviors based on the empirical data. The cognitive adaptive software defined network can be implemented in a wide range of multimedia applications." @default.
- W2622214109 created "2017-06-15" @default.
- W2622214109 creator A5061267204 @default.
- W2622214109 date "2017-05-01" @default.
- W2622214109 modified "2023-09-25" @default.
- W2622214109 title "Keynote speech 4: Smart multimedia services distribution using Software Defined adaptive cognitive Networks" @default.
- W2622214109 doi "https://doi.org/10.1109/fmec.2017.7946399" @default.
- W2622214109 hasPublicationYear "2017" @default.
- W2622214109 type Work @default.
- W2622214109 sameAs 2622214109 @default.
- W2622214109 citedByCount "0" @default.
- W2622214109 crossrefType "proceedings-article" @default.
- W2622214109 hasAuthorship W2622214109A5061267204 @default.
- W2622214109 hasConcept C111919701 @default.
- W2622214109 hasConcept C120314980 @default.
- W2622214109 hasConcept C127413603 @default.
- W2622214109 hasConcept C172191483 @default.
- W2622214109 hasConcept C31258907 @default.
- W2622214109 hasConcept C41008148 @default.
- W2622214109 hasConcept C62611344 @default.
- W2622214109 hasConcept C66938386 @default.
- W2622214109 hasConcept C77270119 @default.
- W2622214109 hasConcept C79974875 @default.
- W2622214109 hasConcept C93996380 @default.
- W2622214109 hasConceptScore W2622214109C111919701 @default.
- W2622214109 hasConceptScore W2622214109C120314980 @default.
- W2622214109 hasConceptScore W2622214109C127413603 @default.
- W2622214109 hasConceptScore W2622214109C172191483 @default.
- W2622214109 hasConceptScore W2622214109C31258907 @default.
- W2622214109 hasConceptScore W2622214109C41008148 @default.
- W2622214109 hasConceptScore W2622214109C62611344 @default.
- W2622214109 hasConceptScore W2622214109C66938386 @default.
- W2622214109 hasConceptScore W2622214109C77270119 @default.
- W2622214109 hasConceptScore W2622214109C79974875 @default.
- W2622214109 hasConceptScore W2622214109C93996380 @default.
- W2622214109 hasLocation W26222141091 @default.
- W2622214109 hasOpenAccess W2622214109 @default.
- W2622214109 hasPrimaryLocation W26222141091 @default.
- W2622214109 hasRelatedWork W2092731857 @default.
- W2622214109 hasRelatedWork W2155824766 @default.
- W2622214109 hasRelatedWork W2202974480 @default.
- W2622214109 hasRelatedWork W2295347485 @default.
- W2622214109 hasRelatedWork W2370261881 @default.
- W2622214109 hasRelatedWork W2603925085 @default.
- W2622214109 hasRelatedWork W2748764962 @default.
- W2622214109 hasRelatedWork W2789437800 @default.
- W2622214109 hasRelatedWork W2792272952 @default.
- W2622214109 hasRelatedWork W2912205949 @default.
- W2622214109 hasRelatedWork W2989846479 @default.
- W2622214109 hasRelatedWork W3015817120 @default.
- W2622214109 hasRelatedWork W3034298244 @default.
- W2622214109 hasRelatedWork W3181968322 @default.
- W2622214109 hasRelatedWork W3190755651 @default.
- W2622214109 hasRelatedWork W3210460527 @default.
- W2622214109 hasRelatedWork W38558970 @default.
- W2622214109 hasRelatedWork W2751531598 @default.
- W2622214109 hasRelatedWork W2807856040 @default.
- W2622214109 hasRelatedWork W3028472767 @default.
- W2622214109 isParatext "false" @default.
- W2622214109 isRetracted "false" @default.
- W2622214109 magId "2622214109" @default.
- W2622214109 workType "article" @default.