Matches in SemOpenAlex for { <https://semopenalex.org/work/W2622478064> ?p ?o ?g. }
- W2622478064 endingPage "18" @default.
- W2622478064 startingPage "18" @default.
- W2622478064 abstract "The number of Stationary Battery Systems (SBS) connected to various power distribution networks across the world has increased drastically. The increase in the integration of renewable energy sources is one of the major contributors to the increase in the number of SBS. SBS are also used in other applications such as peak load management, load-shifting, voltage regulation and power quality improvement. Accurately modeling the charging/discharging characteristics of such SBS at various instances (charging/discharging profile) is vital for many applications. Capacity loss due to the aging of the batteries is an important factor to be considered for estimating the charging/discharging profile of SBS more accurately. Empirical modeling is a common approach used in the literature for estimating capacity loss, which is further used for estimating the charging/discharging profiles of SBS. However, in the case of SBS used for renewable integration and other grid related applications, machine-learning (ML) based models provide extreme flexibility and require minimal resources for implementation. The models can even leverage existing smart meter data to estimate the charging/discharging profile of SBS. In this paper, an analysis on the performance of different ML approaches that can be applied for lithium iron phosphate battery systems and vanadium redox flow battery systems used as SBS is presented for the scenarios where the aging of individual cells is non-uniform." @default.
- W2622478064 created "2017-06-15" @default.
- W2622478064 creator A5002774644 @default.
- W2622478064 creator A5037674578 @default.
- W2622478064 creator A5045630579 @default.
- W2622478064 creator A5060213920 @default.
- W2622478064 creator A5069808079 @default.
- W2622478064 date "2017-06-11" @default.
- W2622478064 modified "2023-10-17" @default.
- W2622478064 title "Performance Analysis of Machine-Learning Approaches for Modeling the Charging/Discharging Profiles of Stationary Battery Systems with Non-Uniform Cell Aging" @default.
- W2622478064 cites W1163455437 @default.
- W2622478064 cites W1533943128 @default.
- W2622478064 cites W1677953779 @default.
- W2622478064 cites W2015959292 @default.
- W2622478064 cites W2025900516 @default.
- W2622478064 cites W2058845438 @default.
- W2622478064 cites W2061552347 @default.
- W2622478064 cites W2065788296 @default.
- W2622478064 cites W2139858245 @default.
- W2622478064 cites W2160656970 @default.
- W2622478064 cites W2214060052 @default.
- W2622478064 cites W2322957928 @default.
- W2622478064 cites W2343332586 @default.
- W2622478064 cites W2512046032 @default.
- W2622478064 cites W2531377131 @default.
- W2622478064 cites W2553743800 @default.
- W2622478064 cites W2557424500 @default.
- W2622478064 cites W2703741076 @default.
- W2622478064 doi "https://doi.org/10.3390/batteries3020018" @default.
- W2622478064 hasPublicationYear "2017" @default.
- W2622478064 type Work @default.
- W2622478064 sameAs 2622478064 @default.
- W2622478064 citedByCount "13" @default.
- W2622478064 countsByYear W26224780642017 @default.
- W2622478064 countsByYear W26224780642019 @default.
- W2622478064 countsByYear W26224780642020 @default.
- W2622478064 countsByYear W26224780642021 @default.
- W2622478064 countsByYear W26224780642022 @default.
- W2622478064 crossrefType "journal-article" @default.
- W2622478064 hasAuthorship W2622478064A5002774644 @default.
- W2622478064 hasAuthorship W2622478064A5037674578 @default.
- W2622478064 hasAuthorship W2622478064A5045630579 @default.
- W2622478064 hasAuthorship W2622478064A5060213920 @default.
- W2622478064 hasAuthorship W2622478064A5069808079 @default.
- W2622478064 hasBestOaLocation W26224780641 @default.
- W2622478064 hasConcept C105795698 @default.
- W2622478064 hasConcept C119599485 @default.
- W2622478064 hasConcept C121332964 @default.
- W2622478064 hasConcept C127413603 @default.
- W2622478064 hasConcept C163258240 @default.
- W2622478064 hasConcept C171146098 @default.
- W2622478064 hasConcept C188573790 @default.
- W2622478064 hasConcept C200601418 @default.
- W2622478064 hasConcept C206658404 @default.
- W2622478064 hasConcept C2777596839 @default.
- W2622478064 hasConcept C2777908891 @default.
- W2622478064 hasConcept C2778333438 @default.
- W2622478064 hasConcept C2779179610 @default.
- W2622478064 hasConcept C2780598303 @default.
- W2622478064 hasConcept C33923547 @default.
- W2622478064 hasConcept C41008148 @default.
- W2622478064 hasConcept C555008776 @default.
- W2622478064 hasConcept C62520636 @default.
- W2622478064 hasConcept C73916439 @default.
- W2622478064 hasConceptScore W2622478064C105795698 @default.
- W2622478064 hasConceptScore W2622478064C119599485 @default.
- W2622478064 hasConceptScore W2622478064C121332964 @default.
- W2622478064 hasConceptScore W2622478064C127413603 @default.
- W2622478064 hasConceptScore W2622478064C163258240 @default.
- W2622478064 hasConceptScore W2622478064C171146098 @default.
- W2622478064 hasConceptScore W2622478064C188573790 @default.
- W2622478064 hasConceptScore W2622478064C200601418 @default.
- W2622478064 hasConceptScore W2622478064C206658404 @default.
- W2622478064 hasConceptScore W2622478064C2777596839 @default.
- W2622478064 hasConceptScore W2622478064C2777908891 @default.
- W2622478064 hasConceptScore W2622478064C2778333438 @default.
- W2622478064 hasConceptScore W2622478064C2779179610 @default.
- W2622478064 hasConceptScore W2622478064C2780598303 @default.
- W2622478064 hasConceptScore W2622478064C33923547 @default.
- W2622478064 hasConceptScore W2622478064C41008148 @default.
- W2622478064 hasConceptScore W2622478064C555008776 @default.
- W2622478064 hasConceptScore W2622478064C62520636 @default.
- W2622478064 hasConceptScore W2622478064C73916439 @default.
- W2622478064 hasIssue "4" @default.
- W2622478064 hasLocation W26224780641 @default.
- W2622478064 hasLocation W26224780642 @default.
- W2622478064 hasLocation W26224780643 @default.
- W2622478064 hasOpenAccess W2622478064 @default.
- W2622478064 hasPrimaryLocation W26224780641 @default.
- W2622478064 hasRelatedWork W1582415106 @default.
- W2622478064 hasRelatedWork W2118623867 @default.
- W2622478064 hasRelatedWork W2331067132 @default.
- W2622478064 hasRelatedWork W2622478064 @default.
- W2622478064 hasRelatedWork W3003941775 @default.
- W2622478064 hasRelatedWork W3183143543 @default.
- W2622478064 hasRelatedWork W3199497862 @default.
- W2622478064 hasRelatedWork W3216372526 @default.
- W2622478064 hasRelatedWork W4210880463 @default.